David Grosso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777221/publications.pdf

Version: 2024-02-01

22153 20358 14,295 185 59 116 citations h-index g-index papers 185 185 185 12089 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. Journal of the American Chemical Society, 2003, 125, 9770-9786.	13.7	871
2	Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity. Chemistry of Materials, 2008, 20, 682-737.	6.7	735
3	Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly. Advanced Functional Materials, 2004, 14, 309-322.	14.9	732
4	Block copolymer-templated mesoporous oxides. Current Opinion in Colloid and Interface Science, 2003, 8, 109-126.	7.4	459
5	Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry. Langmuir, 2005, 21, 12362-12371.	3.5	396
6	Highly Organized Mesoporous Titania Thin Films Showing Mono-Oriented 2D Hexagonal Channels. Advanced Materials, 2001, 13, 1085-1090.	21.0	330
7	Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Materials, 2004, 3, 787-792.	27.5	327
8	Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials. Advanced Materials, 2011, 23, 599-623.	21.0	327
9	Highly Porous TiO2 Anatase Optical Thin Films with Cubic Mesostructure Stabilized at 700 °C. Chemistry of Materials, 2003, 15, 4562-4570.	6.7	312
10	Highly Crystalline Cubic Mesoporous TiO2with 10-nm Pore Diameter Made with a New Block Copolymer Template. Chemistry of Materials, 2004, 16, 2948-2952.	6.7	309
11	Mesostructured hybrid organic–inorganic thin films. Journal of Materials Chemistry, 2005, 15, 3598.	6.7	304
12	How to exploit the full potential of the dip-coating process to better control film formation. Journal of Materials Chemistry, 2011, 21, 17033.	6.7	290
13	"Chimie douce― A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 2010, 13, 3-39.	0.5	270
14	Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Solâ^'Gel Coatings: An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells. Chemistry of Materials, 2010, 22, 4406-4413.	6.7	258
15	Optimised photocatalytic activity of grid-like mesoporous TiO2films: effect of crystallinity, pore size distribution, and pore accessibility. Journal of Materials Chemistry, 2006, 16, 77-82.	6.7	257
16	Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal–Organic Frameworks. Advanced Materials, 2009, 21, 1931-1935.	21.0	257
17	Preparation of Solâ´´Gel Films by Dip-Coating in Extreme Conditions. Journal of Physical Chemistry C, 2010, 114, 7637-7645.	3.1	242
18	Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers:Â Detailed Characterization and Formation Mechanism. Chemistry of Materials, 2001, 13, 1848-1856.	6.7	233

#	Article	IF	Citations
19	An in Situ Study of Mesostructured CTABâ^'Silica Film Formation during Dip Coating Using Time-Resolved SAXS and Interferometry Measurements. Chemistry of Materials, 2002, 14, 931-939.	6.7	198
20	Orderâ^'Disorder Transitions and Evolution of Silica Structure in Self-Assembled Mesostructured Silica Films Studied through FTIR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 4711-4717.	2.6	196
21	Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. Journal of Materials Chemistry, 2003, 13, 61-66.	6.7	193
22	The True Structure of Hexagonal Mesophase-Templated Silica Films As Revealed by X-ray Scattering:Â Effects of Thermal Treatments and of Nanoparticle Seeding. Chemistry of Materials, 2000, 12, 1721-1728.	6.7	187
23	Design of functional nano-structured materials through the use of controlled hybrid organic–inorganic interfaces. Comptes Rendus Chimie, 2003, 6, 1131-1151.	0.5	183
24	Molecular Transport into Mesostructured Silica Thin Films:Â Electrochemical Monitoring and Comparison betweenp6m, P63/mmc, andPm3nStructures. Chemistry of Materials, 2007, 19, 844-856.	6.7	177
25	Green Microwave Synthesis of MILâ€100(Al, Cr, Fe) Nanoparticles for Thinâ€Film Elaboration. European Journal of Inorganic Chemistry, 2012, 2012, 5165-5174.	2.0	176
26	Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New Journal of Chemistry, 2003, 27, 9-13.	2.8	168
27	Nanostructured Titanium Oxynitride Porous Thin Films as Efficient Visibleâ€Active Photocatalysts. Advanced Functional Materials, 2007, 17, 3348-3354.	14.9	166
28	Nanocrystalline Transition-Metal Oxide Spheres with Controlled Multi-Scale Porosity. Advanced Functional Materials, 2003, 13, 37-42.	14.9	159
29	Evaporation-Controlled Self-Assembly of Silica Surfactant Mesophases. Journal of Physical Chemistry B, 2003, 107, 6114-6118.	2.6	155
30	Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness. Journal of Materials Chemistry, 2010, 20, 7676.	6.7	151
31	Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 2014, 26, 221-238.	6.7	147
32	Stability of Mesoporous Oxide and Mixed Metal Oxide Materials under Biologically Relevant Conditions. Chemistry of Materials, 2007, 19, 4349-4356.	6.7	146
33	Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. Journal of Materials Chemistry, 2007, 17, 1563-1569.	6.7	133
34	Highly oriented 3D-hexagonal silica thin films produced with cetyltrimethylammonium bromide. Journal of Materials Chemistry, 2000, 10, 2085-2089.	6.7	130
35	Nanocrystalline Mesoporous γ-Alumina Powders "UPMC1 Material―Gathers Thermal and Chemical Stability with High Surface Area. Chemistry of Materials, 2006, 18, 5238-5243.	6.7	118
36	Silica Orthorhombic Mesostructured Films with Low Refractive Index and High Thermal Stability. Journal of Physical Chemistry B, 2004, 108, 10942-10948.	2.6	114

#	Article	IF	Citations
37	Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale, 2012, 4, 2549.	5.6	114
38	Sorption Properties of Mesoporous Multilayer Thin Films. Journal of Physical Chemistry C, 2008, 112, 3157-3163.	3.1	110
39	Growth of Gold Nanoparticle Arrays in TiO2Mesoporous Matrixes. Langmuir, 2004, 20, 6879-6886.	3.5	104
40	Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films. Chemistry of Materials, 2006, 18, 6152-6156.	6.7	96
41	Pyrolysis, Crystallization, and Sintering of Mesostructured Titania Thin Films Assessed by in Situ Thermal Ellipsometry. Journal of the American Chemical Society, 2008, 130, 7882-7897.	13.7	96
42	Generation of Self-Assembled 3D Mesostructured SnO2 Thin Films with Highly Crystalline Frameworks. Advanced Functional Materials, 2006, 16, 1433-1440.	14.9	92
43	Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate from Mesoporous Ordered Silica Particles. Macromolecular Rapid Communications, 2006, 27, 393-398.	3.9	87
44	Aerosol generated mesoporous silica particles. Journal of Materials Chemistry, 2003, 13, 3011.	6.7	85
45	Ultralow-dielectric-constant optical thin films built from magnesium oxyfluoride vesicle-like hollow nanoparticles. Nature Materials, 2007, 6, 572-575.	27.5	85
46	Nanoimprinted, Submicrometric, MOFâ€Based 2D Photonic Structures: Toward Easy Selective Vapors Sensing by a Smartphone Camera. Advanced Functional Materials, 2016, 26, 81-90.	14.9	85
47	Coupling Nanobuilding Block and Breath Figures Approaches for the Designed Construction of Hierarchically Templated Porous Materials and Membranes. Chemistry of Materials, 2008, 20, 1049-1056.	6.7	81
48	Molecular and supramolecular dynamics of hybrid organic–inorganic interfaces for the rational construction of advanced hybrid nanomaterials. Chemical Society Reviews, 2011, 40, 829-848.	38.1	77
49	Studies on atomic layer deposition of MOF-5 thin films. Microporous and Mesoporous Materials, 2013, 182, 147-154.	4.4	76
50	Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures. Science Advances, 2017, 3, eaao1472.	10.3	74
51	Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review. Analytical and Bioanalytical Chemistry, 2013, 405, 1497-1512.	3.7	71
52	From Chemical Solutions to Inorganic Nanostructured Materials: A Journey into Evaporation-Driven Processes. Chemistry of Materials, 2014, 26, 709-723.	6.7	70
53	Surface Nanopatterning by Organic/Inorganic Self-Assembly and Selective Local Functionalization. Small, 2006, 2, 569-574.	10.0	68
54	A Chemical Solution Deposition Route To Nanopatterned Inorganic Material Surfaces. Chemistry of Materials, 2007, 19, 3717-3725.	6.7	67

#	Article	IF	CITATIONS
55	Sol–Gel Based Hydrophobic Antireflective Coatings on Organic Substrates: A Detailed Investigation of Ammonia Vapor Treatment (AVT). Chemistry of Materials, 2014, 26, 1822-1833.	6.7	67
56	Soft-Chemistry–Based Routes to Epitaxial α-Quartz Thin Films with Tunable Textures. Science, 2013, 340, 827-831.	12.6	64
57	A New Dip Coating Method to Obtain Largeâ€Surface Coatings with a Minimum of Solution. Advanced Materials, 2015, 27, 4958-4962.	21.0	64
58	Critical effect of pore characteristics on capillary infiltration in mesoporous films. Nanoscale, 2015, 7, 5371-5382.	5 . 6	63
59	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 561-565.	2.4	61
60	Preparation, treatment and characterisation of nanocrystalline mesoporous ordered layers. Journal of Sol-Gel Science and Technology, 2006, 40, 141-154.	2.4	55
61	Hexagonally organised mesoporous aluminium–oxo–hydroxide thin films prepared by the template approach. In situ study of the structural formation. Journal of Materials Chemistry, 2002, 12, 557-564.	6.7	53
62	An optical fibre pH sensor based on dye doped mesostructured silica. Journal of Physics and Chemistry of Solids, 2004, 65, 1751-1755.	4.0	52
63	Formation of Palladium Nanostructures in a Seed-Mediated Synthesis through an Oriented-Attachment-Directed Aggregation. Chemistry of Materials, 2009, 21, 2668-2678.	6.7	52
64	Engineering Functionality Gradients by Dip Coating Process in Acceleration Mode. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17102-17110.	8.0	51
65	Designed synthesis of large-pore mesoporous silica–zirconia thin films with high mixing degree and tunable cubic or 2D-hexagonal mesostructure. Journal of Materials Chemistry, 2004, 14, 1879-1886.	6.7	50
66	Ink Jet Printing of Microdot Arrays of Mesostructured Silica. Journal of the American Ceramic Society, 2006, 89, 1876-1882.	3.8	48
67	Converting Water Adsorption and Capillary Condensation in Usable Forces with Simple Porous Inorganic Thin Films. ACS Nano, 2016, 10, 10031-10040.	14.6	47
68	Understanding Crystallization of Anatase into Binary SiO ₂ /TiO ₂ Solâ^'Gel Optical Thin Films: An in Situ Thermal Ellipsometry Analysis. Journal of Physical Chemistry C, 2011, 115, 3115-3122.	3.1	46
69	Hybrid non-silica mesoporous thin films. New Journal of Chemistry, 2005, 29, 59-63.	2.8	42
70	Bottom-up Approach toward Titanosilicate Mesoporous Pillared Planar Nanochannels for Nanofluidic Applications. Chemistry of Materials, 2010, 22, 5687-5694.	6.7	42
71	Distance Dependence of the Photocatalytic Efficiency of TiO ₂ Revealed by in Situ Ellipsometry. Journal of the American Chemical Society, 2012, 134, 10761-10764.	13.7	42
72	Formation and Stabilization of Mesostructured Vanadium-Oxo-Based Hybrid Thin Films. Chemistry of Materials, 2002, 14, 3316-3325.	6.7	41

#	Article	IF	CITATIONS
73	An ordered hydrophobic P6mm mesoporous carbon with graphitic pore walls and its application in aqueous catalysis. Carbon, 2011, 49, 1290-1298.	10.3	41
74	Nanocasted mesoporous nanocrystalline ZnO thin films. Journal of Materials Chemistry, 2010, 20, 537-542.	6.7	40
75	Highly Controlled Dip-Coating Deposition of <i>fct</i> FePt Nanoparticles from Layered Salt Precursor into Nanostructured Thin Films: An Easy Way To Tune Magnetic and Optical Properties. Chemistry of Materials, 2012, 24, 1072-1079.	6.7	40
76	Porosimetry for Thin Films of Metal–Organic Frameworks: A Comparison of Positron Annihilation Lifetime Spectroscopy and Adsorptionâ€Based Methods. Advanced Materials, 2021, 33, e2006993.	21.0	40
77	Design, Synthesis, Structural and Textural Characterization, and Electrical Properties of Mesoporous Thin Films Made of Rare Earth Oxide Binaries. Chemistry of Materials, 2009, 21, 2184-2192.	6.7	39
78	Thick and Crack-Free Nanocrystalline Mesoporous TiO ₂ Films Obtained by Capillary Coating from Aqueous Solutions. Chemistry of Materials, 2010, 22, 6218-6220.	6.7	39
79	Scandia optical coatings for application at 351 nm. Thin Solid Films, 2000, 368, 116-124.	1.8	38
80	Pore Size-Dependent Structure of Confined Water in Mesoporous Silica Films from Water Adsorption/Desorption Using ATR–FTIR Spectroscopy. Langmuir, 2019, 35, 11986-11994.	3.5	38
81	Quantifying the Extent of Ligand Incorporation and the Effect on Properties of TiO ₂ Thin Films Grown by Atomic Layer Deposition Using an Alkoxide or an Alkylamide. Chemistry of Materials, 2020, 32, 1393-1407.	6.7	38
82	Wetting of Heterogeneous Nanopatterned Inorganic Surfaces. Chemistry of Materials, 2008, 20, 1476-1483.	6.7	36
83	Thermally Induced Porosity in CSD MgF ₂ -Based Optical Coatings: An Easy Method to Tune the Refractive Index. Chemistry of Materials, 2008, 20, 5550-5556.	6.7	36
84	Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. Journal of Materials Chemistry, 2011, 21, 3597.	6.7	36
85	Multifunctional Metasurfaces Based on Direct Nanoimprint of Titania Sol–Gel Coatings. Advanced Optical Materials, 2019, 7, 1801406.	7.3	36
86	Magnetic films on nanoperforated templates: a route towards percolated perpendicular media. Nanotechnology, 2010, 21, 495701.	2.6	35
87	Templated dewetting of single-crystal sub-millimeter-long nanowires and on-chip silicon circuits. Nature Communications, 2019, 10, 5632.	12.8	33
88	New Hybrid Bidentate Ligands as Precursors for Smart Catalysts. Chemistry - A European Journal, 2005, 11, 7416-7426.	3.3	32
89	Nanoporous Piezo- and Ferroelectric Thin Films. Langmuir, 2012, 28, 2944-2949.	3.5	31
90	"Integrative sol–gel chemistry― a nanofoundry for materials science. Journal of Sol-Gel Science and Technology, 2014, 70, 216-226.	2.4	31

#	Article	IF	Citations
91	Critical Role of the Atmosphere in Dip-Coating Process. Journal of Physical Chemistry C, 2017, 121, 14572-14580.	3.1	31
92	Confinement-Induced Growth of Au Nanoparticles Entrapped in Mesoporous TiO2 Thin Films Evidenced by in Situ Thermo-Ellipsometry. Journal of Physical Chemistry C, 2014, 118, 13137-13151.	3.1	30
93	Scandium oxide nanoparticles produced from sol–gel chemistry. Journal of Materials Chemistry, 2000, 10, 359-363.	6.7	29
94	"Black―Titania Coatings Composed of Sol–Gel Imprinted Mie Resonators Arrays. Advanced Functional Materials, 2017, 27, 1604924.	14.9	28
95	Ultraporous nanocrystalline TiO ₂ -based films: synthesis, patterning and application as anti-reflective, self-cleaning, superhydrophilic coatings. Nanoscale, 2015, 7, 19419-19425.	5.6	27
96	Preparation of multi-nanocrystalline transition metal oxide (TiO2–NiTiO3) mesoporous thin films. New Journal of Chemistry, 2005, 29, 141-144.	2.8	26
97	Europiumâ€Doped Mesoporous Titania Thin Films: Rareâ€Earth Locations and Emission Fluctuations under Illumination. ChemPhysChem, 2008, 9, 2077-2084.	2.1	26
98	Detailed study of the pore-filling processes during nanocasting of mesoporous films using SnO2/SiO2 as a model system. Microporous and Mesoporous Materials, 2009, 123, 185-192.	4.4	26
99	Tailorâ€made Nanometerâ€scale Patterns of Photoâ€switchable Prussian Blue Analogues. Advanced Materials, 2010, 22, 3992-3996.	21.0	25
100	Water Capillary Condensation Effect on the Photocatalytic Activity of Porous TiO ₂ in Air. Journal of Physical Chemistry C, 2014, 118, 17710-17716.	3.1	25
101	Structural Transitions in Asymmetric Poly(styrene)- <i>block</i> -Poly(lactide) Thin Films Induced by Solvent Vapor Exposure. ACS Applied Materials & Solvent Vapor Exposure.	8.0	25
102	Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS Applied Materials & Interfaces, 2020, 12, 13598-13612.	8.0	25
103	Nanoimprint Lithography Processing of Inorganic-Based Materials. Chemistry of Materials, 2021, 33, 5464-5482.	6.7	25
104	One-pot self-assembly of mesostructured silica films and membranes functionalised with fullerene derivativesElectronic supplementary information (ESI) available: selected analytical data of 2 and 3. See http://www.rsc.org/suppdata/jm/b4/b401916d/. Journal of Materials Chemistry, 2004, 14, 1838.	6.7	24
105	Preparation, structural and optical characterization of rare earth doped mesoporous Y2O3 thin films by EISA method. Microporous and Mesoporous Materials, 2007, 103, 273-279.	4.4	24
106	Environment-controlled sol–gel soft-NIL processing for optimized titania, alumina, silica and yttria-zirconia imprinting at sub-micron dimensions. Nanoscale, 2018, 10, 1420-1431.	5.6	24
107	Sol–gel route to advanced nanoelectrode arrays (NEA) based on titania gold nanocomposites. Journal of Materials Chemistry, 2008, 18, 1216.	6.7	23
108	Design of transition metal oxide mesoporous thin films. Studies in Surface Science and Catalysis, 2002, 141, 235-242.	1.5	22

#	Article	IF	Citations
109	Waterâ€Induced Phase Separation Forming Macrostructured Epitaxial Quartz Films on Silicon. Advanced Functional Materials, 2014, 24, 5494-5502.	14.9	22
110	Role of quantum confinement in luminescence efficiency of group IV nanostructures. Journal of Applied Physics, 2014, 115, .	2.5	22
111	Titaniaâ€Based Spherical Mie Resonators Elaborated by Highâ€Throughput Aerosol Spray: Single Object Investigation. Advanced Functional Materials, 2018, 28, 1801958.	14.9	22
112	Niobia-stabilised anatase TiO2 highly porous mesostructured thin films. Microporous and Mesoporous Materials, 2006, 94, 208-213.	4.4	21
113	Characterization of Nanoporous Polystyrene Thin Films by Environmental Ellipsometric Porosimetry. Macromolecules, 2011, 44, 8892-8897.	4.8	20
114	Recording study of percolated perpendicular media. Applied Physics Letters, 2011, 98, .	3.3	20
115	Self-assembled titanium calcium oxide nanopatterns as versatile reactive nanomasks for dry etching lithographic transfer with high selectivity. Nanoscale, 2013, 5, 984-990.	5.6	20
116	Hydrophobization of marble pore surfaces using a total immersion treatment method – Product selection and optimization of concentration and treatment time. Progress in Organic Coatings, 2015, 85, 159-167.	3.9	20
117	Resistant RuO ₂ /SiO ₂ Absorbing Sol–Gel Coatings for Solar Energy Conversion at High Temperature. Chemistry of Materials, 2015, 27, 2711-2717.	6.7	20
118	Electrochemical investigations into ferrocenylphosphonic acid functionalized mesostructured porous nanocrystalline titanium oxide films. Journal of Materials Chemistry, 2006, 16, 3762-3767.	6.7	19
119	Alcohol-Assisted Water Condensation and Stabilization into Hydrophobic Mesoporosity. Journal of Physical Chemistry C, 2014, 118, 23907-23917.	3.1	19
120	Water Evaporation Studied by In Situ Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 2745-2749.	2.5	18
121	Emission-photoactivity cross-processing of mesoporous interfacial charge transfer in Eu3+ doped titania. Physical Chemistry Chemical Physics, 2011, 13, 11878.	2.8	18
122	Mesoscopically structured nanocrystalline metal oxide thin films. Nanoscale, 2014, 6, 14025-14043.	5.6	18
123	Hierarchical inorganic nanopatterning (INP) through direct easy block-copolymer templating. Journal of Materials Chemistry, 2009, 19, 3638.	6.7	17
124	Stain Effects Studied by Time-Resolved Infrared Imaging. Analytical Chemistry, 2009, 81, 551-556.	6.5	17
125	Gold Nanoelectrode Arrays and their Evaluation by Impedance Spectroscopy and Cyclic Voltammetry. ChemPhysChem, 2010, 11, 1971-1977.	2.1	17
126	Controlling the Processing of Mesoporous Titania Films by in Situ FTIR Spectroscopy: Getting Crystalline Micelles into the Mesopores. Journal of Physical Chemistry C, 2010, 114, 10806-10811.	3.1	17

#	Article	IF	Citations
127	NbVO ₅ Mesoporous Thin Films by Evaporation Induced Micelles Packing: Pore Size Dependence of the Mechanical Stability upon Thermal Treatment and Li Insertion/Extraction. Chemistry of Materials, 2011, 23, 4124-4131.	6.7	17
128	Dynamic Shaping of Femtoliter Dew Droplets. ACS Nano, 2018, 12, 3243-3252.	14.6	17
129	The generation of mesoporous CeO2 with crystalline pore walls using novel block copolymer templates. Studies in Surface Science and Catalysis, 2005, 156, 243-248.	1.5	16
130	Highly ordered metal oxide nanopatterns prepared by template-assisted chemical solution deposition. Journal of Sol-Gel Science and Technology, 2008, 48, 102-112.	2.4	16
131	Design of UV-crosslinked polymeric thin layers for encapsulation of piezoelectric ZnO nanowires for pressure-based fingerprint sensors. Journal of Materials Chemistry C, 2018, 6, 605-613.	5.5	16
132	Probing the energy barriers and magnetization reversal processes of nanoperforated membrane based percolated media. Nanotechnology, 2013, 24, 145702.	2.6	15
133	Distribution of fluoroalkylsilanes in hydrophobic hybrid sol–gel coatings obtained by co-condensation. Journal of Materials Chemistry A, 2018, 6, 24899-24910.	10.3	15
134	Magnetization Reversal in Arrays of Magnetic Nanoperforations. IEEE Transactions on Magnetics, 2009, 45, 3515-3518.	2.1	14
135	Direct electrogeneration of FePt nanoparticles into highly ordered Inorganic NanoPattern stabilising membranes. Journal of Sol-Gel Science and Technology, 2010, 53, 551-554.	2.4	14
136	Mesoporous SiO2thin films containing photoluminescent ZnO nanoparticles and simultaneous SAXS/WAXS/ellipsometry experiments. Journal of Materials Chemistry, 2011, 21, 1139-1146.	6.7	14
137	Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn. Microporous and Mesoporous Materials, 2013, 170, 123-130.	4.4	14
138	Suppressing Structural Colors of Photocatalytic Optical Coatings on Glass: The Critical Role of SiO2. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14093-14102.	8.0	14
139	Sol–gel technique for the generation of europium-doped mesoporous and dense thin films: A luminescent study. Journal of Luminescence, 2009, 129, 1641-1645.	3.1	13
140	Self-assembled inorganic nanopatterns (INPs) made by sol-gel dip-coating: Applications in nanotechnology and nanofabrication. Comptes Rendus Chimie, 2016, 19, 248-265.	0.5	13
141	Full Investigation of Angle Dependence in Dip-Coating Sol–Gel Films. Journal of Physical Chemistry B, 2017, 121, 6220-6225.	2.6	13
142	Methylated Silica Surfaces Having Tapered Nipple-Dimple Nanopillar Morphologies as Robust Broad-Angle and Broadband Antireflection Coatings. ACS Applied Nano Materials, 2020, 3, 5231-5239.	5.0	13
143	Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces. Physical Review Materials, 2018, 2, .	2.4	13
144	Understanding crystallization processes of NiO/Ce0.9Gd0.1O2â^δ sol–gel processed thin films for the design of efficient electrodes: an in situ thermal ellipsometry analysis. Journal of Materials Chemistry, 2012, 22, 9368.	6.7	12

#	Article	IF	Citations
145	A direct novel synthesis of highly uniform dispersed ruthenium nanoparticles over P6mm ordered mesoporous carbon by host–guest complexes. Journal of Materials Chemistry A, 2014, 2, 6641-6648.	10.3	12
146	Solid-state dewetting of single-crystal silicon on insulator: effect of annealing temperature and patch size. Microelectronic Engineering, 2018, 190, 1-6.	2.4	12
147	Conductive-bridge memory cells based on a nanoporous electrodeposited GeSbTe alloy. Nanotechnology, 2019, 30, 025202.	2.6	12
148	Scalable Disordered Hyperuniform Architectures <i>via</i> Nanoimprint Lithography of Metal Oxides. ACS Applied Materials & Disordered Hyperuniform Architectures <i>1021, 13, 37761-37774.</i>	8.0	12
149	Core-shell effects of functionalized oxide nanoparticles inside long-range meso-ordered spray-dried silica spheres. Journal of Sol-Gel Science and Technology, 2008, 47, 119-123.	2.4	11
150	Using Sol–Gel Replications to Assess the Porosity of Block-Copolymer Derived Thin Films. Journal of Physical Chemistry C, 2012, 116, 5295-5302.	3.1	11
151	(Invited) Photoluminescence Efficiency of Germanium Dots Self-Assembled on Oxides. ECS Transactions, 2013, 53, 185-206.	0.5	11
152	In-Depth Study of Coating Multimodal Porosity Using Ellipsometry Porosimetry in Desorption Scanning Mode. Journal of Physical Chemistry C, 2019, 123, 23464-23479.	3.1	11
153	Liquid deposition approaches to self-assembled periodic nanomasks. Scripta Materialia, 2014, 74, 13-18.	5.2	10
154	Flexible photonic devices based on dielectric antennas. JPhys Photonics, 2020, 2, 015002.	4.6	10
155	Robust and conductive mesoporous reduced graphene oxide-silica hybrids achieved by printing and the sol gel route. Journal of the European Ceramic Society, 2021, 41, 2908-2917.	5.7	10
156	Towards bottom-up nanopatterning of Prussian blue analogues. Beilstein Journal of Nanotechnology, 2014, 5, 1933-1943.	2.8	9
157	Spatially controlled positioning of coordination polymer nanoparticles onto heterogeneous nanostructured surfaces. Nanoscale, 2017, 9, 5234-5243.	5.6	9
158	Influence of experimental parameters on the side reactions of hydrosilylation of allyl polyethers studied by a fractional factorial design. Reaction Chemistry and Engineering, 2018, 3, 696-706.	3.7	9
159	Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas. APL Materials, 2020, 8, 021109.	5.1	9
160	Predicting Size Distributions of Ge Nanodots from Their Photoluminescence. Journal of the Electrochemical Society, 2010, 157, H1160.	2.9	8
161	Hydrophobization of marble pore surfaces using a total immersion treatment method $\hat{a}\in$ Influence of co-solvents and temperature on fluorosurfactant vesicle behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 104-111.	4.7	8
162	Large Scale Self-Organization of 2D Hexagonal Ge and Au Nanodots on Patterned TiO2 for Optoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 2026-2035.	5.0	8

#	Article	IF	Citations
163	Nitrogen doped spongy TiO2 layers for sensors application. Materials Science in Semiconductor Processing, 2019, 98, 44-48.	4.0	8
164	Synthesis of poly(phenylene oxide)-based fluoro-tin-oxide/ZrO2 nanoelectrode arrays by hybrid organic/inorganic approach. Electrochimica Acta, 2011, 56, 7155-7162.	5.2	7
165	Photoluminescence Efficiency and Size Distribution of Self Assembled Ge Dots on Porous TiO ₂ . Journal of Nanoscience and Nanotechnology, 2011, 11, 9190-9195.	0.9	7
166	Bimodal Porosity and Stability of a TiO2 Gig-Lox Sponge Infiltrated with Methyl-Ammonium Lead Iodide Perovskite. Nanomaterials, 2019, 9, 1300.	4.1	7
167	Crystal Growth in Mesoporous TiO ₂ Optical Thin Films. Journal of Physical Chemistry C, 2019, 123, 6070-6079.	3.1	7
168	Tuning Mesoporous Silica Film Accessibility Through Controlled Dissolution in NH ₄ F: Investigation of Structural Change by Ellipsometry Porosimetry and X-ray Reflectivity. Journal of Physical Chemistry C, 2019, 123, 30398-30406.	3.1	7
169	Quasi-Guided Modes in Titanium Dioxide Arrays Fabricated via Soft Nanoimprint Lithography. ACS Applied Materials & Diverge 1, 13, 47860-47870.	8.0	7
170	Exploring the internal structure of mesoporous powders and thin films by continuous flow laser-enhanced 129Xe NMR. Studies in Surface Science and Catalysis, 2004, 154, 1464-1470.	1.5	6
171	Design of functional nano-structured inorganic and hybrid materials. Studies in Surface Science and Catalysis, 2005, 156, 19-36.	1.5	6
172	Pt ZrO2 nanoelectrode array synthesized through the sol–gel process: evaluation of their sensing capability. Journal of Solid State Electrochemistry, 2013, 17, 1099-1107.	2.5	6
173	Ethanol–water co-condensation into hydrophobic mesoporous thin films: example of a photonic ethanol vapor sensor in humid environment. Journal of Sol-Gel Science and Technology, 2017, 81, 95-104.	2.4	6
174	Study of a liquid crystal impregnated diffraction grating for active waveguide addressing., 2022,,.		5
175	Porous Gig-Lox TiO2 Doped with N2 at Room Temperature for P-Type Response to Ethanol. Chemosensors, 2019, 7, 12.	3.6	4
176	Enhanced Refractive Index Sensitivity through Combining a Sol–Gel Adsorbate with a TiO2 Nanoimprinted Metasurface for Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2021, , .	8.0	4
177	Tailored 3D Interface for Efficiency Improvement in Encapsulation-Free Hybrid Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3248-3251.	8.0	3
178	Porosimetry: Porosimetry for Thin Films of Metal–Organic Frameworks: A Comparison of Positron Annihilation Lifetime Spectroscopy and Adsorptionâ€Based Methods (Adv. Mater. 17/2021). Advanced Materials, 2021, 33, 2170133.	21.0	3
179	Phase transformations involved during silica, modified silica, and non-silica mesoporous-organized thin films deposition. The role of evaporation Studies in Surface Science and Catalysis, 2003, 146, 281-284.	1.5	2
180	Method To Detect Ethanol Vapor in High Humidity by Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating. ACS Applied Materials & Direct Reflection on a Xerogel Coating & Direct Reflection & Direct	8.0	2

#	Article	IF	CITATIONS
181	Quartz Films: Water-Induced Phase Separation Forming Macrostructured Epitaxial Quartz Films on Silicon (Adv. Funct. Mater. 35/2014). Advanced Functional Materials, 2014, 24, 5493-5493.	14.9	1
182	Vapor Sensing: Nanoimprinted, Submicrometric, MOFâ€Based 2D Photonic Structures: Toward Easy Selective Vapors Sensing by a Smartphone Camera (Adv. Funct. Mater. 1/2016). Advanced Functional Materials, 2016, 26, 80-80.	14.9	1
183	Designed Construction of Functional Mesostructured Porous Materials. Advances in Science and Technology, 2006, 45, 803-813.	0.2	O
184	Nanoâ€Structures and Nanomaterials Selfâ€Assembly. Physica Status Solidi (B): Basic Research, 2019, 256, 1900345.	1.5	0
185	Ionic Diffusion, Nanoparticle Formation and Trapping Within Solâ€Gel Made Pillared Planar Nanochannels in a Simple Microfluidic Device. ChemNanoMat, 2020, 6, 392-403.	2.8	O