
Rachna Chaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular insights into effector binding by DgoR, a GntR/FadR family transcriptional repressor of Dâ€galactonate metabolism in <i>Escherichia coli</i> . Molecular Microbiology, 2021, 115, 591-609.	2.5	8
2	Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Current Genetics, 2021, 67, 573-582.	1.7	8
3	Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy. PLoS Genetics, 2020, 16, e1009081.	3.5	6
4	Molecular and Functional Insights into the Regulation of <scp>d</scp> -Galactonate Metabolism by the Transcriptional Regulator DgoR in <i>Escherichia coli</i> . Journal of Bacteriology, 2019, 201, .	2.2	14
5	Ubiquinone is a Key Antioxidant during Long Chain Fatty Acid Metabolism in <i>Escherichia coli</i> . FASEB Journal, 2018, 32, 538.3.	0.5	1
6	A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids. Journal of Biological Chemistry, 2017, 292, 20086-20099.	3.4	32
7	Dual Molecular Signals Mediate the Bacterial Response to Outer-Membrane Stress. Science, 2013, 340, 837-841.	12.6	159
8	Signal integration by DegS and RseB governs the σ ^E -mediated envelope stress response in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2106-2111.	7.1	63
9	Phenotypic Landscape of a Bacterial Cell. Cell, 2011, 144, 143-156.	28.9	623
10	Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor InÂVivo. Cell, 2011, 147, 1295-1308.	28.9	419
11	Analyzing the Interaction of RseA and RseB, the Two Negative Regulators of the ÏfE Envelope Stress Response, Using a Combined Bioinformatic and Experimental Strategy. Journal of Biological Chemistry, 2009, 284, 5403-5413.	3.4	11
12	Interdomain Interaction Reconstitutes the Functionality of PknA, a Eukaryotic Type Ser/Thr Kinase from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2008, 283, 8023-8033.	3.4	26
13	Design principles of the proteolytic cascade governing the ÂE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes and Development, 2007, 21, 124-136.	5.9	101
14	Fine-tuning of the Escherichia coli ÂE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes and Development, 2004, 18, 2686-2697.	5.9	109
15	The excised heat-shock domain of αB crystallin is a folded, proteolytically susceptible trimer with significant surface hydrophobicity and a tendency to self-aggregate upon heating. Protein Expression and Purification, 2004, 36, 263-271.	1.3	11
16	Evidence that a eukaryoticâ€ŧype serine/threonine protein kinase from <i>Mycobacterium tuberculosis</i> regulates morphological changes associated with cell division. FEBS Journal, 2002, 269, 1078-1085.	0.2	92
17	B-subunit of Phosphate-specific Transporter fromMycobacterium tuberculosis Is a Thermostable ATPase. Journal of Biological Chemistry, 2001, 276, 44590-44597.	3.4	24