
Audrey E Lenhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6777087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ: British Medical Journal, 2006, 332, 1247-1252.	2.4	199
2	Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Tropical Medicine and International Health, 2010, 15, 619-31.	1.0	167
3	Insecticideâ€treated bednets to control dengue vectors: preliminary evidence from a controlled trial in Haiti. Tropical Medicine and International Health, 2008, 13, 56-67.	1.0	112
4	Time-varying, serotype-specific force of infection of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2694-702.	3.3	105
5	Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control. PLoS Neglected Tropical Diseases, 2013, 7, e2438.	1.3	103
6	Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Scientific Reports, 2018, 8, 2084.	1.6	101
7	Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites and Vectors, 2016, 9, 67.	1.0	99
8	Insecticide resistance status of <i>Aedes aegypti</i> (L.) from Colombia. Pest Management Science, 2011, 67, 430-437.	1.7	90
9	Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Scientific Reports, 2018, 8, 6747.	1.6	89
10	Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review. PLoS Neglected Tropical Diseases, 2015, 9, e0004006.	1.3	77
11	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	1.3	70
12	The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pesticide Biochemistry and Physiology, 2013, 107, 226-234.	1.6	63
13	Evaluation of the Effectiveness of Insecticide Treated Materials for Household Level Dengue Vector Control. PLoS Neglected Tropical Diseases, 2011, 5, e994.	1.3	61
14	Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Neglected Tropical Diseases, 2018, 12, e0006298.	1.3	60
15	Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico. Emerging Infectious Diseases, 2015, 21, 308-311.	2.0	55
16	Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Scientific Reports, 2018, 8, 12535.	1.6	50
17	Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Neglected Tropical Diseases, 2017, 11, e0005656.	1.3	47
18	Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN). PLoS Neglected Tropical Diseases, 2016, 10, e0005054.	1.3	43

AUDREY E LENHART

#	Article	IF	CITATIONS
19	Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 106-115.	0.7	41
20	Pyrethroid exposure alters internal and cuticle surface bacterial communities in <i>Anopheles albimanus</i> . ISME Journal, 2019, 13, 2447-2464.	4.4	38
21	Building a better ovitrap for detecting Aedes aegypti oviposition. Acta Tropica, 2005, 96, 56-59.	0.9	37
22	The impact of indoor residual spraying of deltamethrin on dengue vector populations in the Peruvian Amazon. Acta Tropica, 2016, 154, 139-144.	0.9	37
23	Dengue Knowledge and Preventive Practices in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1330-1337.	0.6	34
24	A Cluster-Randomized Trial of Insecticide-Treated Curtains for Dengue Vector Control in Thailand. American Journal of Tropical Medicine and Hygiene, 2013, 88, 254-259.	0.6	33
25	Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts: a spatial analysis. Lancet Planetary Health, The, 2021, 5, e277-e285.	5.1	32
26	Efficacy of novel indoor residual spraying methods targeting pyrethroid-resistant Aedes aegypti within experimental houses. PLoS Neglected Tropical Diseases, 2019, 13, e0007203.	1.3	31
27	Coverage-Dependent Effect of Insecticide-Treated Curtains for Dengue Control in Thailand. American Journal of Tropical Medicine and Hygiene, 2013, 89, 93-98.	0.6	29
28	House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Neglected Tropical Diseases, 2018, 12, e0006283.	1.3	29
29	Schools as Potential Risk Sites for Vector-Borne Disease Transmission: Mosquito Vectors in Rural Schools in Two Municipalities in Colombia. Journal of the American Mosquito Control Association, 2015, 31, 212-222.	0.2	28
30	The Influence of Diet on the Use of Near-Infrared Spectroscopy to Determine the Age of Female Aedes aegypti Mosquitoes. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1070-1075.	0.6	27
31	Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malaria Journal, 2021, 20, 77.	0.8	27
32	Is routine dengue vector surveillance in central Brazil able to accurately monitor the <i>Aedes aegypti</i> population? Results from a pupal productivity survey. Tropical Medicine and International Health, 2011, 16, 1143-1150.	1.0	25
33	Relationship between Aedes aegypti production and occurrence of Escherichia coli in domestic water storage containers in rural and sub-urban villages in Thailand and Laos. Acta Tropica, 2013, 126, 177-185.	0.9	24
34	A Cluster-Randomized Controlled Trial to Reduce Diarrheal Disease and Dengue Entomological Risk Factors in Rural Primary Schools in Colombia. PLoS Neglected Tropical Diseases, 2016, 10, e0005106.	1.3	24
35	The Buen Pastor cemetery in Trujillo, Venezuela: measuring dengue vector output from a public area. Tropical Medicine and International Health, 2005, 10, 597-603.	1.0	22
36	Fine-scale spatial and temporal dynamics of kdr haplotypes in Aedes aegypti from Mexico. Parasites and Vectors, 2019, 12, 20.	1.0	22

AUDREY E LENHART

#	Article	IF	CITATIONS
37	Mosquito Control Activities during Local Transmission of Zika Virus, Miami-Dade County, Florida, USA, 2016. Emerging Infectious Diseases, 2020, 26, 881-890.	2.0	22
38	Novel mutations on the ace-1 gene of the malaria vector Anopheles albimanus provide evidence for balancing selection in an area of high insecticide resistance in Peru. Malaria Journal, 2015, 14, 74.	0.8	21
39	Contrasting patterns of gene expression indicate differing pyrethroid resistance mechanisms across the range of the New World malaria vector Anopheles albimanus. PLoS ONE, 2019, 14, e0210586.	1.1	21
40	Molecular evidence for historical presence of knock-down resistance in Anopheles albimanus, a key malaria vector in Latin America. Parasites and Vectors, 2013, 6, 268.	1.0	20
41	Review and Meta-Analysis of the Evidence for Choosing between Specific Pyrethroids for Programmatic Purposes. Insects, 2021, 12, 826.	1.0	20
42	A whole transcriptomic approach provides novel insights into the molecular basis of organophosphate and pyrethroid resistance in Anopheles arabiensis from Ethiopia. Insect Biochemistry and Molecular Biology, 2021, 139, 103655.	1.2	19
43	The impact of insecticide treated curtains on dengue virus transmission: A cluster randomized trial in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008097.	1.3	18
44	Insecticide Resistance Patterns and Mechanisms in <i>Aedes aegypti</i> (Diptera: Culicidae) Populations Across Abidjan, Côte d'Ivoire Reveal Emergent Pyrethroid Resistance. Journal of Medical Entomology, 2021, 58, 1808-1816.	0.9	17
45	Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru. Parasites and Vectors, 2019, 12, 494.	1.0	16
46	Impact of population displacement and forced movements on the transmission and outbreaks of Aedes-borne viral diseases: Dengue as a model. Acta Tropica, 2019, 197, 105066.	0.9	16
47	Vgsc-interacting proteins are genetically associated with pyrethroid resistance in Aedes aegypti. PLoS ONE, 2019, 14, e0211497.	1.1	16
48	The TIRS trial: protocol for a cluster randomized controlled trial assessing the efficacy of preventive targeted indoor residual spraying to reduce Aedes-borne viral illnesses in Merida, Mexico. Trials, 2020, 21, 839.	0.7	16
49	Insecticide resistance status of Aedes aegypti in Bangladesh. Parasites and Vectors, 2020, 13, 622.	1.0	15
50	Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasites and Vectors, 2020, 13, 224.	1.0	15
51	4. Insecticide-based approaches for dengue vector control. Ecology and Control of Vector-Borne Diseases, 2021, , 59-89.	0.3	14
52	Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in <i>Aedes aegypti</i> . Evolutionary Applications, 2021, 14, 2098-2113.	1.5	14
53	Molecular xenomonitoring for Wuchereria bancrofti in Culex quinquefasciatus in two districts in Bangladesh supports transmission assessment survey findings. PLoS Neglected Tropical Diseases, 2018, 12, e0006574.	1.3	13
54	Rapid Screening of Aedes aegypti Mosquitoes for Susceptibility to Insecticides as Part of Zika Emergency Response, Puerto Rico. Emerging Infectious Diseases, 2019, 25, 1959-1961.	2.0	13

AUDREY E LENHART

#	Article	IF	CITATIONS
55	Knowledge, attitudes, and practices about dengue among pupils from rural schools in an endemic area in Colombia. Biomedica, 2019, 39, 478-490.	0.3	12
56	Integrated disease management: arboviral infections and waterborne diarrhoea. Bulletin of the World Health Organization, 2021, 99, 583-592.	1.5	10
57	Factors Associated with Correct and Consistent Insecticide Treated Curtain Use in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2016, 10, e0004409.	1.3	10
58	Experiences with insecticide-treated curtains: a qualitative study in Iquitos, Peru. BMC Public Health, 2016, 16, 582.	1.2	9
59	Development of molecular assays to detect target-site mechanisms associated with insecticide resistance in malaria vectors from Latin America. Malaria Journal, 2019, 18, 202.	0.8	8
60	Antibody Responses Against Anopheles darlingi Immunogenic Peptides in Plasmodium Infected Humans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 455.	1.8	8
61	Dengue control. Lancet Infectious Diseases, The, 2008, 8, 7-9.	4.6	6
62	Mechanisms associated with pyrethroid resistance in populations of Aedes aegypti (Diptera: Culicidae) from the Caribbean coast of Colombia. PLoS ONE, 2020, 15, e0228695.	1.1	6
63	First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasites and Vectors, 2022, 15, .	1.0	6
64	Characterization of horizontally acquired ribotoxin encoding genes and their transcripts in Aedes aegypti. Gene, 2020, 754, 144857.	1.0	5
65	Entomological Efficacy of Aerial Ultra-Low Volume Insecticide Applications Against Aedes aegypti (Diptera: Culicidae) in Mexico. Journal of Medical Entomology, 2019, 56, 1331-1337.	0.9	4
66	Pyrethroid resistance in the New World malaria vector Anopheles albimanus is mediated by cytochrome P450 CYP6P5. Pesticide Biochemistry and Physiology, 2022, 183, 105061.	1.6	4
67	Comprehensive characterization of internal and cuticle surface microbiota of laboratory-reared F1 Anopheles albimanus originating from different sites. Malaria Journal, 2021, 20, 414.	0.8	3
68	Field Efficacy Trials of Aerial Ultra-Low-Volume Application of Insecticides Against Caged <i>Aedes aegypti</i> in Mexico. Journal of the American Mosquito Control Association, 2019, 35, 140-146.	0.2	3
69	Spatial spillover analysis of a cluster-randomized trial against dengue vectors in Trujillo, Venezuela. PLoS Neglected Tropical Diseases, 2020, 14, e0008576.	1.3	2
70	Evaluation of insecticide treated window curtains and water container covers for dengue vector control in a large-scale cluster-randomized trial in Venezuela. PLoS Neglected Tropical Diseases, 2022, 16, e0010135.	1.3	2
71	Insecticide-Treated House Screens to Reduce Infestations of Dengue Vectors. , 2017, , .		1
72	Preliminary Report of the Insecticide Susceptibility Status of Aedes albopictus in Bangladesh. American Journal of Tropical Medicine and Hygiene, 2022, 106, 332-333.	0.6	1