Véronique Vitry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6776762/publications.pdf

Version: 2024-02-01

		304368	3	360668
51	1,388	22		35
papers	citations	h-index		g-index
52	52	52		617
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Recent advances in electroless nickel‑boron coatings. Surface and Coatings Technology, 2022, 429, 127937.	2.2	50
2	Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating. Surface and Coatings Technology, 2022, 434, 128168.	2.2	18
3	High-energy ball milling of WC-10Co: Effect of the milling medium and speed on the mechanical properties. International Journal of Refractory Metals and Hard Materials, 2022, 104, 105774.	1.7	8
4	Recovery of the microstructural changes of different duplex stainless steel alloys. Multidiscipline Modeling in Materials and Structures, 2021, 17, 668-680.	0.6	3
5	Study of the Processing of a Recycled WC–Co Powder: Can It Compete with Conventional WC–Co Powders?. Journal of Sustainable Metallurgy, 2021, 7, 448-458.	1.1	9
6	Characterization of Electroless Nickel–Boron Deposit from Optimized Stabilizer-Free Bath. Coatings, 2021, 11, 576.	1.2	15
7	Replacement of Lead stabilizer in electroless Nickel-Boron baths: Synthesis and characterization of coatings from bismuth stabilized bath. Sustainable Materials and Technologies, 2020, 23, e00130.	1.7	16
8	Study of the milling parameters optimization in the direct carburization of WO3 by mechanical alloying. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105160.	1.7	5
9	Inorganic salts stabilizers effect in electroless nickel-boron plating: Stabilization mechanism and microstructure modification. Surface and Coatings Technology, 2020, 401, 126276.	2.2	8
10	Covid-19: effect of disinfection on corrosion of surfaces. Corrosion Engineering Science and Technology, 2020, 55, 693-695.	0.7	15
11	Influence of the milling parameters on the sintering behaviour of WC-Co composites. Materials and Manufacturing Processes, 2020, 35, 811-816.	2.7	8
12	Effect of temperature on ultrasound-assisted electroless nickel-boron plating. Ultrasonics Sonochemistry, 2019, 56, 327-336.	3.8	23
13	The tin stabilization effect on the microstructure, corrosion and wear resistance of electroless NiB coatings. Surface and Coatings Technology, 2019, 357, 353-363.	2.2	30
14	Mechanical properties of heat-treated duplex electroless nickel coatings. Surface Engineering, 2019, 35, 158-166.	1.1	13
15	Indentation : techniques expérimentales et modélisation multiéchelle. Materiaux Et Techniques, 2019, 107, 204.	0.3	2
16	Contraintes résiduelles et comportement mécanique de revêtements nickel-bore. Materiaux Et Techniques, 2019, 107, 205.	0.3	1
17	Corrosion behaviour of electroless high boron-mid phosphorous nickel duplex coatings in the as-plated and heat-treated states in NaCl, H2SO4, NaOH and Na2SO4 media. Materials Chemistry and Physics, 2018, 208, 77-84.	2.0	29
18	Chemical, morphological and structural characterisation of electroless duplex NiP/NiB coatings on steel. Surface Engineering, 2018, 34, 475-484.	1.1	20

#	Article	IF	CITATIONS
19	Influence of the anionic part of the stabilizer on electroless nickel-boron plating. Materials and Manufacturing Processes, 2018, 33, 227-231.	2.7	10
20	Optimization of electroless NiB deposition without stabilizer, based on surface roughness and plating rate. Journal of Alloys and Compounds, 2018, 767, 276-284.	2.8	31
21	Trends in heat treatment and surface engineering. Metallurgical Research and Technology, 2018, 115, 401.	0.4	2
22	Control, modeling and characterization of heat treatment and surface engineering. Materiaux Et Techniques, 2018, 106, 101.	0.3	0
23	Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings. Ultrasonics, 2017, 77, 61-68.	2.1	30
24	Increase of boron content in electroless nickel-boron coating by modification of plating conditions. Surface and Coatings Technology, 2017, 311, 164-171.	2.2	78
25	Formation and characterization of multilayers borohydride and hypophosphite reduced electroless nickel deposits. Electrochimica Acta, 2017, 243, 7-17.	2.6	42
26	Wear Performance of Thermally Sprayed NiCrBSi and NiCrBSi-WC Coatings Under Two Different Wear Modes. Journal of Materials and Environmental Science, 2017, 8, 4550-4559.	0.5	14
27	Electroless Nickel-Boron Coatings. , 2016, , 1161-1178.		1
28	Mechanical and wear characterization of electroless nickel mono and bilayers and high boron-mid phosphorus electroless nickel duplex coatings. Surface and Coatings Technology, 2016, 307, 957-962.	2,2	44
29	Monitoring of chloride stress corrosion cracking of austenitic stainless steel: identification of the phases of the corrosion process and use of a modified accelerated test. Corrosion Science, 2016, 110, 273-283.	3.0	25
30	Tungsten carbide powder obtained by direct carburization of tungsten trioxide using mechanical alloying method. Journal of Alloys and Compounds, 2016, 659, 302-308.	2.8	32
31	Formation of borohydride-reduced nickel–boron coatings on various steel substrates. Applied Surface Science, 2015, 359, 692-703.	3.1	18
32	Direct Carburization of Tungsten Trioxide by Mechanical Alloying. Advanced Materials Research, 2015, 1128, 51-57.	0.3	1
33	Nanostructured electroless nickel-boron coatings for wear resistance. , 2015, , 157-199.		9
34	Corrosion behaviour and biocorrosion of galvanized steel water distribution systems. Bioelectrochemistry, 2014, 97, 110-119.	2.4	26
35	Experimental study on the formation and growth of electroless nickel–boron coatings from borohydride-reduced bath on mild steel. Applied Surface Science, 2012, 263, 640-647.	3.1	63
36	Evolution of Reactive Concentration during Borohydride-Reduced Electroless Nickel–Boron Plating and Design of a Replenishment Procedure. Industrial & Engineering Chemistry Research, 2012, 51, 9227-9234.	1.8	19

#	Article	IF	CITATIONS
37	Microstructure of two centrifugal cast high speed steels for hot strip mills applications. Materials & Design, 2012, 34, 372-378.	5.1	33
38	Application of nitriding to electroless nickel–boron coatings: Chemical and structural effects; mechanical characterization; corrosion resistance. Materials & Design, 2012, 39, 269-278.	5.1	69
39	Wear and corrosion resistance of heat treated and as-plated Duplex NiP/NiB coatings on 2024 aluminum alloys. Surface and Coatings Technology, 2012, 206, 3421-3427.	2.2	67
40	Structural state of electroless nickel–boron deposits (5wt.% B): Characterization by XRD and TEM. Surface and Coatings Technology, 2012, 206, 3444-3449.	2.2	87
41	Mechanical and wear characterization of electroless nickel-boron coatings. Surface and Coatings Technology, 2011, 206, 1879-1885.	2.2	70
42	Initiation and formation of electroless nickel–boron coatings on mild steel: Effect of substrate roughness. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 175, 266-273.	1.7	47
43	Wear and Corrosion Resistance of Electroless Nickel-Boron Coated Mild Steel. Materials Science Forum, 2010, 638-642, 846-851.	0.3	9
44	Nickel–boron electrochemical properties investigations. Journal of Alloys and Compounds, 2010, 505, 151-156.	2.8	44
45	Effect of thermochemical and heat treatments on electroless nickel–boron. Materials Letters, 2009, 63, 2662-2665.	1.3	53
46	Wear and corrosion resistance behaviours of autocatalytic electroless plating. Journal of Alloys and Compounds, 2009, 486, L21-L23.	2.8	48
47	Mechanical properties and scratch test resistance of nickel–boron coated aluminium alloy after heat treatments. Surface and Coatings Technology, 2008, 202, 3316-3324.	2.2	89
48	Preparation and characterization of gasochromic thin films. Thin Solid Films, 2006, 502, 265-269.	0.8	18
49	Tribological Characterization of Electroless Nickel-Boron Coatings. Advanced Materials Research, 0, 409, 808-813.	0.3	5
50	Comparison of Various Electroless Nickel Coatings on Steel: Structure, Hardness and Abrasion Resistance. Materials Science Forum, 0, 783-786, 1405-1413.	0.3	26
51	Accelerated Aging and Portevin-Le Chatelier Effect in AA 2024. Materials Science Forum, 0, 879, 524-529.	0.3	5