
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6776708/publications.pdf Version: 2024-02-01

WEIRIN SHI

#	Article	IF	CITATIONS
1	Role for Peroxisome Proliferator-Activated Receptor α in Oxidized Phospholipid–Induced Synthesis of Monocyte Chemotactic Protein-1 and Interleukin-8 by Endothelial Cells. Circulation Research, 2000, 87, 516-521.	4.5	284
2	Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in Mice. Circulation, 2000, 102, 75-81.	1.6	196
3	Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model. Circulation Research, 2000, 86, 1078-1084.	4.5	138
4	Identification of Pathways for Atherosclerosis in Mice. Circulation Research, 2007, 101, e11-30.	4.5	108
5	Paradoxical Reduction of Fatty Streak Formation in Mice Lacking Endothelial Nitric Oxide Synthase. Circulation, 2002, 105, 2078-2082.	1.6	84
6	Genetic Locus in Mice That Blocks Development of Atherosclerosis Despite Extreme Hyperlipidemia. Circulation Research, 2001, 89, 125-130.	4.5	83
7	Lnc-ATB contributes to gastric cancer growth through a MiR-141-3p/TGFβ2 feedback loop. Biochemical and Biophysical Research Communications, 2017, 484, 514-521.	2.1	74
8	In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. International Journal of Nanomedicine, 2014, 9, 4223.	6.7	67
9	Circulating adhesion molecules in apoE-deficient mouse strains with different atherosclerosis susceptibility. Biochemical and Biophysical Research Communications, 2005, 329, 1102-1107.	2.1	64
10	Deficiency of inducible NO synthase reduces advanced but not early atherosclerosis in apolipoprotein E-deficient mice. Life Sciences, 2006, 79, 525-531.	4.3	63
11	Quantitative Trait Locus Analysis of Atherosclerosis in an Intercross Between C57BL/6 and C3H Mice Carrying the Mutant Apolipoprotein E Gene. Genetics, 2006, 172, 1799-1807.	2.9	45
12	20(S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway. Drug Design, Development and Therapy, 2015, 9, 3969.	4.3	42
13	Hyperglycemia in apolipoprotein E-deficient mouse strains with different atherosclerosis susceptibility. Cardiovascular Diabetology, 2011, 10, 117.	6.8	39
14	Mapping, Genetic Isolation, and Characterization of Genetic Loci That Determine Resistance to Atherosclerosis in C3H Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2671-2676.	2.4	38
15	Genetic linkage of hyperglycemia, body weight and serum amyloid-P in an intercross between C57BL/6 and C3H apolipoprotein E-deficient mice. Human Molecular Genetics, 2006, 15, 1650-1658.	2.9	35
16	Antiretrovirals Induce Endothelial Dysfunction via an Oxidant-Dependent Pathway and Promote Neointimal Hyperplasia. Toxicological Sciences, 2010, 117, 524-536.	3.1	32
17	Effect of Macrophage-Derived Apolipoprotein E on Established Atherosclerosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2261-2266.	2.4	30
18	Genetic Backgrounds but Not Sizes of Atherosclerotic Lesions Determine Medial Destruction in the Aortic Root of Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1901-1906.	2.4	30

#	Article	IF	CITATIONS
19	Endocytosis Pathways of Endothelial Cell Derived Exosomes. Molecular Pharmaceutics, 2018, 15, 5585-5590.	4.6	30
20	Hyperlipidemia is a major determinant of neointimal formation in LDL receptor-deficient mice. Biochemical and Biophysical Research Communications, 2006, 345, 1004-1009.	2.1	29
21	siRNA silencing reveals role of vascular cell adhesion molecule-1 in vascular smooth muscle cell migration. Atherosclerosis, 2008, 198, 301-306.	0.8	29
22	Differential response of vascular smooth muscle cells to oxidized LDL in mouse strains with different atherosclerosis susceptibility. Atherosclerosis, 2006, 189, 99-105.	0.8	28
23	Microarray analysis of gene expression in mouse aorta reveals role of the calcium signaling pathway in control of atherosclerosis susceptibility. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1336-H1343.	3.2	27
24	Atherosclerosis in C3H/HeJ Mice Reconstituted With Apolipoprotein E-Null Bone Marrow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 650-655.	2.4	26
25	PET imaging detection of macrophages with a formyl peptide receptor antagonist. Nuclear Medicine and Biology, 2015, 42, 381-386.	0.6	26
26	Characterization of <i>Ath29</i> , a major mouse atherosclerosis susceptibility locus, and identification of <i>Rcn2</i> as a novel regulator of cytokine expression. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1056-H1061.	3.2	25
27	Quantitative Trait Locus Analysis of Carotid Atherosclerosis in an Intercross Between C57BL/6 and C3H Apolipoprotein E–Deficient Mice. Stroke, 2008, 39, 166-173.	2.0	24
28	Direct Evidence for a Crucial Role of the Arterial Wall in Control of Atherosclerosis Susceptibility. Circulation, 2006, 114, 2382-2389.	1.6	23
29	pH-responsive carboxymethyl chitosan-derived micelles as apatinib carriers for effective anti-angiogenesis activity: Preparation and in vitro evaluation. Carbohydrate Polymers, 2017, 176, 107-116.	10.2	23
30	Effect of Aging on Fatty Streak Formation in a Diet-Induced Mouse Model of Atherosclerosis. Journal of Vascular Research, 2008, 45, 205-210.	1.4	22
31	Quantitative Trait Locus Analysis of Neointimal Formation in an Intercross Between C57BL/6 and C3H/HeJ Apolipoprotein E–Deficient Mice. Circulation: Cardiovascular Genetics, 2009, 2, 220-228.	5.1	22
32	Effect of macrophage-derived apolipoprotein E on hyperlipidemia and atherosclerosis of LDLR-deficient mice. Biochemical and Biophysical Research Communications, 2004, 317, 223-229.	2.1	20
33	Genetic Analysis of Atherosclerosis and Glucose Homeostasis in an Intercross Between C57BL/6 and BALB/cJ Apolipoprotein E–Deficient Mice. Circulation: Cardiovascular Genetics, 2012, 5, 190-201.	5.1	20
34	Variation in Type 2 Diabetes-Related Phenotypes among Apolipoprotein E-Deficient Mouse Strains. PLoS ONE, 2015, 10, e0120935.	2.5	20
35	Neointimal formation in two apolipoprotein E-deficient mouse strains with different atherosclerosis susceptibility. Journal of Lipid Research, 2004, 45, 2008-2014.	4.2	19
36	Lipid retention in the arterial wall of two mouse strains with different atherosclerosis susceptibility. Journal of Lipid Research, 2004, 45, 1155-1161.	4.2	19

#	Article	IF	CITATIONS
37	miR-223 increases gallbladder cancer cell sensitivity to docetaxel by downregulating STMN1. Oncotarget, 2016, 7, 62364-62376.	1.8	19
38	New quantitative trait loci for carotid atherosclerosis identified in an intercross derived from apolipoprotein E-deficient mouse strains. Physiological Genomics, 2013, 45, 332-342.	2.3	18
39	Influence of phthalates on glucose homeostasis and atherosclerosis in hyperlipidemic mice. BMC Endocrine Disorders, 2015, 15, 13.	2.2	18
40	Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images. Academic Radiology, 2021, 28, 1481-1487.	2.5	18
41	Differential responses of pulmonary arteries and veins to histamine and 5-HT in lung explants of guinea-pigs. British Journal of Pharmacology, 1998, 123, 1525-1532.	5.4	17
42	Atherosclerosis Susceptibility Loci Identified in an Extremely Atherosclerosisâ€Resistant Mouse Strain. Journal of the American Heart Association, 2013, 2, e000260.	3.7	17
43	Genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. Atherosclerosis, 2020, 293, 1-10.	0.8	16
44	Apolipoprotein E knockout mice have accentuated malnutrition with mucosal disruption and blunted insulin-like growth factor I responses to refeeding. Nutrition Research, 2006, 26, 427-435.	2.9	15
45	Altered reactivity of pulmonary vessels in postobstructive pulmonary vasculopathy. Journal of Applied Physiology, 2000, 88, 17-25.	2.5	14
46	Accelerated atherogenesis in completely ligated common carotid artery of apolipoprotein E-deficient mice. Oncotarget, 2017, 8, 110289-110299.	1.8	13
47	Endothelin reactivity and receptor profile of pulmonary vessels in postobstructive pulmonary vasculopathy. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2558-H2564.	3.2	12
48	Paradoxical increase in LDL oxidation by endothelial cells from an atherosclerosis-resistant mouse strain. Atherosclerosis, 2007, 192, 259-265.	0.8	12
49	Identification of Soat1 as a Quantitative Trait Locus Gene on Mouse Chromosome 1 Contributing to Hyperlipidemia. PLoS ONE, 2011, 6, e25344.	2.5	12
50	Genetic linkage of hyperglycemia and dyslipidemia in an intercross between BALB/cJ and SM/J Apoe-deficient mouse strains. BMC Genetics, 2015, 16, 133.	2.7	12
51	Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice. Atherosclerosis, 2016, 254, 124-132.	0.8	12
52	Effects of amphiphilic chitosan-g-poly(Îμ-caprolactone) polymer additives on paclitaxel release from drug eluting implants. Materials Science and Engineering C, 2014, 45, 502-509.	7.3	11
53	Polygenic Control of Carotid Atherosclerosis in a BALB/cJ × SM/J Intercross and a Combined Cross Involving Multiple Mouse Strains. G3: Genes, Genomes, Genetics, 2017, 7, 731-739.	1.8	11
54	Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS ONE, 2018, 13, e0204071.	2.5	11

#	Article	IF	CITATIONS
55	Characterization of <i>Bglu3</i> , a mouse fasting glucose locus, and identification of <i>Apcs</i> as an underlying candidate gene. Physiological Genomics, 2012, 44, 345-351.	2.3	10
56	Exploring the structure–property relationships of ultrasonic/MRI dual imaging magnetite/PLA microbubbles: magnetite@Cavity versus magnetite@Shell systems. Colloid and Polymer Science, 2012, 290, 1617-1626.	2.1	10
57	Genetics of atherosclerosis: The search for genes acting at the level of the vessel wall. Current Atherosclerosis Reports, 2000, 2, 380-389.	4.8	9
58	Genes Within the MHC Region Have a Dramatic Influence on Radiation-Enhanced Atherosclerosis in Mice. Circulation: Cardiovascular Genetics, 2010, 3, 409-413.	5.1	9
59	Size Exclusion HPLC Detection of Small-Size Impurities as a Complementary Means for Quality Analysis of Extracellular Vesicles. Journal of Circulating Biomarkers, 2015, 4, 6.	1.3	9
60	Genetic analysis of a mouse cross implicates an anti-inflammatory gene in control of atherosclerosis susceptibility. Mammalian Genome, 2017, 28, 90-99.	2.2	9
61	Influence of experimental parameters and the copolymer structure on the size control of nanospheres in double emulsion method. Journal of Polymer Research, 2011, 18, 131-137.	2.4	8
62	Enhanced mechanical property of chitosan via blending with functional poly(ε aprolactone). Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 659-667.	2.1	8
63	Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. American Journal of Physiology - Renal Physiology, 2019, 316, F1141-F1150.	2.7	8
64	Association of a Vcam1 mutation with atherosclerosis susceptibility in diet-induced models of atherosclerosis. Atherosclerosis, 2008, 196, 234-239.	0.8	7
65	Mapping and Congenic Dissection of Genetic Loci Contributing to Hyperglycemia and Dyslipidemia in Mice. PLoS ONE, 2016, 11, e0148462.	2.5	7
66	Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains. Journal of Vascular Research, 2019, 56, 241-254.	1.4	7
67	Hyperlipidemia Influences the Accuracy of Glucometer-Measured Blood Glucose Concentrations in Genetically Diverse Mice. American Journal of the Medical Sciences, 2021, 362, 297-302.	1.1	7
68	Identification of Mep1a as a susceptibility gene for atherosclerosis in mice. Genetics, 2021, 219, .	2.9	6
69	Regional Variation in Genetic Control of Atherosclerosis in Hyperlipidemic Mice. G3: Genes, Genomes, Genetics, 2020, 10, 4679-4689.	1.8	5
70	Inflammation and enhanced atherogenesis in the carotid artery with altered blood flow in an atherosclerosisâ€resistant mouse strain. Physiological Reports, 2021, 9, e14829.	1.7	5
71	Plant-based <i>β</i> -mannanase supplemented diet modulates the gut microbiota and up-regulates the expression of immunity and digestion-related genes in <i>Cyprinus carpio</i> . Journal of Applied Animal Research, 2022, 50, 21-30.	1.2	5
72	Quantitative trait locus analysis of circulating adhesion molecules in hyperlipidemic apolipoprotein E-deficient mice. Molecular Genetics and Genomics, 2008, 280, 375-383.	2.1	3

#	Article	IF	CITATIONS
73	Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis. Cells, 2022, 11, 1107.	4.1	3
74	Genetic Connection between Hyperglycemia and Carotid Atherosclerosis in Hyperlipidemic Mice. Genes, 2022, 13, 510.	2.4	3
75	Genetic Evidence for a Causal Relationship between Hyperlipidemia and Type 2 Diabetes in Mice. International Journal of Molecular Sciences, 2022, 23, 6184.	4.1	2
76	Ldlr-Deficient Mice with an Atherosclerosis-Resistant Background Develop Severe Hyperglycemia and Type 2 Diabetes on a Western-Type Diet. Biomedicines, 2022, 10, 1429.	3.2	2
77	Genetic connection of carotid atherosclerosis with coat color and body weight in an intercross between hyperlipidemic mouse strains. Physiological Genomics, 2022, , .	2.3	1
78	Data on genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice. Data in Brief, 2016, 9, 1067-1069.	1.0	0
79	Data on genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. Data in Brief, 2020, 29, 105165.	1.0	Ο
80	Aging elevates circulating vascular cell adhesion moleculeâ€1 levels but has no effect on atherosclerotic lesion formation in wildâ€type C57BL/6 mice. FASEB Journal, 2007, 21, A853.	0.5	0