Charles Y Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6776465/publications.pdf

Version: 2024-02-01

87888 149698 14,268 61 38 56 citations h-index g-index papers 68 68 68 22049 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell, 2013, 153, 307-319.	28.9	3,202
2	Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers. Cell, 2013, 153, 320-334.	28.9	2,366
3	Transcriptional Amplification in Tumor Cells with Elevated c-Myc. Cell, 2012, 151, 56-67.	28.9	1,262
4	c-Myc Regulates Transcriptional Pause Release. Cell, 2010, 141, 432-445.	28.9	1,104
5	Discovery and Characterization of Super-Enhancer-Associated Dependencies in Diffuse Large B Cell Lymphoma. Cancer Cell, 2013, 24, 777-790.	16.8	635
6	Revisiting Global Gene Expression Analysis. Cell, 2012, 151, 476-482.	28.9	526
7	NF-κB Directs Dynamic Super Enhancer Formation in Inflammation and Atherogenesis. Molecular Cell, 2014, 56, 219-231.	9.7	507
8	Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature, 2016, 529, 413-417.	27.8	490
9	Convergence of Developmental and Oncogenic Signaling Pathways at Transcriptional Super-Enhancers. Molecular Cell, 2015, 58, 362-370.	9.7	382
10	BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment. Molecular Cell, 2017, 67, 5-18.e19.	9.7	347
11	Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature, 2016, 530, 57-62.	27.8	318
12	In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 2021, 589, 608-614.	27.8	275
13	Models of human core transcriptional regulatory circuitries. Genome Research, 2016, 26, 385-396.	5 . 5	223
14	Mutant NPM1 Maintains the Leukemic State through HOX Expression. Cancer Cell, 2018, 34, 499-512.e9.	16.8	209
15	Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nature Genetics, 2018, 50, 515-523.	21.4	163
16	Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nature Medicine, 2019, 25, 292-300.	30.7	120
17	Taming of the beast: shaping Myc-dependent amplification. Trends in Cell Biology, 2015, 25, 241-248.	7.9	119
18	Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nature Genetics, 2014, 46, 618-623.	21.4	117

#	Article	IF	CITATIONS
19	Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. ELife, 2018, 7, .	6.0	109
20	High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nature Communications, 2019, 10, 4358.	12.8	109
21	Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer. Cancer Discovery, 2016, 6, 1006-1021.	9.4	108
22	Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation. Circulation Research, 2019, 125, 662-677.	4.5	105
23	Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chemical Biology, 2019, 26, 792-803.e10.	5.2	103
24	Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell, 2021, 184, 384-403.e21.	28.9	94
25	PI3K/AKT Signaling Regulates H3K4 Methylation in Breast Cancer. Cell Reports, 2016, 15, 2692-2704.	6.4	92
26	Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. Journal of Experimental Medicine, 2019, 216, 1071-1090.	8.5	89
27	Discovery of a selective inhibitor of doublecortin like kinase 1. Nature Chemical Biology, 2020, 16, 635-643.	8.0	84
28	Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription. Cell Chemical Biology, 2019, 26, 711-723.e14.	5.2	82
29	HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2021, 143, 1874-1890.	1.6	71
30	Signal-Dependent Recruitment of BRD4 to Cardiomyocyte Super-Enhancers Is Suppressed by a MicroRNA. Cell Reports, 2016, 16, 1366-1378.	6.4	70
31	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell, 2019, 36, 51-67.e7.	16.8	69
32	BET bromodomain proteins regulate enhancer function during adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2144-2149.	7.1	65
33	Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer. Cell Reports, 2017, 18, 2359-2372.	6.4	59
34	NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma. Cancer Cell, 2018, 33, 435-449.e6.	16.8	52
35	Trisomy of a Down Syndrome Critical Region Globally Amplifies Transcription via HMGN1 Overexpression. Cell Reports, 2018, 25, 1898-1911.e5.	6.4	52
36	PAX8 activates metabolic genes via enhancer elements in Renal Cell Carcinoma. Nature Communications, 2019, 10, 3739.	12.8	49

#	Article	IF	Citations
37	Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nature Medicine, 2018, 24, 505-511.	30.7	47
38	ZFTA–RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discovery, 2021, 11, 2200-2215.	9.4	46
39	Modulating Androgen Receptor-Driven Transcription in Prostate Cancer with Selective CDK9 Inhibitors. Cell Chemical Biology, 2021, 28, 134-147.e14.	5.2	44
40	Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. Journal of Clinical Investigation, 2020, 130, 5875-5892.	8.2	40
41	Deregulation of the Ras-Erk Signaling Axis Modulates the Enhancer Landscape. Cell Reports, 2015, 12, 1300-1313.	6.4	37
42	Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14805-14810.	7.1	37
43	Mechanistic basis and efficacy of targeting the β-catenin–TCF7L2–JMJD6–c-Myc axis to overcome resistance to BET inhibitors. Blood, 2020, 135, 1255-1269.	1.4	27
44	IRF2 is a master regulator of human keratinocyte stem cell fate. Nature Communications, 2019, 10, 4676.	12.8	25
45	AMP-activated protein kinase links acetyl-CoA homeostasis to BRD4 recruitment in acute myeloid leukemia. Blood, 2019, 134, 2183-2194.	1.4	25
46	Non-overlapping Control of Transcriptome by Promoter- and Super-Enhancer-Associated Dependencies in Multiple Myeloma. Cell Reports, 2018, 25, 3693-3705.e6.	6.4	23
47	Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. Cell Reports Medicine, 2021, 2, 100188.	6.5	15
48	An oncogenic enhancer encodes selective selenium dependency in AML. Cell Stem Cell, 2022, 29, 386-399.e7.	11.1	15
49	A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia. Genes and Development, 2022, 36, 368-389.	5. 9	14
50	Targeting the Apoa1 locus for liver-directed gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 21, 656-669.	4.1	9
51	Transcriptional Plasticity Drives Leukemia Immune Escape. Blood Cancer Discovery, 2022, 3, 394-409.	5.0	8
52	Computational Drug Repositioning Identifies Potentially Active Therapies for Chordoma. Neurosurgery, 2021, 88, 428-436.	1.1	7
53	KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation. Science Advances, 2022, 8, eabj2917.	10.3	5
54	Defining the transcriptional control of pediatric AML highlights RARA as a superenhancer-regulated druggable dependency. Blood Advances, 2021, 5, 4864-4876.	5. 2	4

#	Article	IF	CITATIONS
55	Springing an evolutionary trap on cancer. Nature Genetics, 2020, 52, 361-362.	21.4	1
56	Disruption Of Super Enhancer-Driven Cancer Dependencies In Diffuse Large B-Cell Lymphoma. Blood, 2013, 122, 3021-3021.	1.4	1
57	PDTM-22. A C19MC-LIN28A-MYCN ONCOGENIC CIRCUIT DRIVEN BY HIJACKED SUPER-ENHANCERS IS A DISTINCT THERAPEUTIC VULNERABILITY IN ETMRS – A LETHAL BRAIN TUMOR. Neuro-Oncology, 2019, 21, vi191-vi192.	1.2	O
58	EPEN-30. C11ORF95-RELA FUSION PROTEIN ENGAGES NOVEL GENOMIC LOCI TO DRIVE MURINE EPENDYMOMA GROWTH. Neuro-Oncology, 2020, 22, iii314-iii314.	1.2	0
59	RNA Regulator of Lipogenesis (RROL) Is a Novel Lncrna Mediating Protein-Protein Interaction at Gene Regulatory Loci Driving Lipogenic Programs in Multiple Myeloma. Blood, 2020, 136, 20-21.	1.4	0
60	Abstract 15707: Histone Deacetylase Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 2020, 142, .	1.6	0
61	Targeting MM at the Nexus between Cell Cycle and Transcriptional Regulation Via CDK7 Inhibition. Blood, 2020, 136, 1-2.	1.4	O