Jose Aleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6776116/publications.pdf

Version: 2024-02-01

192	7,008	44 h-index	74
papers	citations		g-index
267	267	267	5980
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants. Journal of Materials Science and Technology, 2022, 103, 134-143.	5.6	13
2	Fluorinated Sulfinates as Source of Alkyl Radicals in the Photoâ€Enantiocontrolled βâ€Functionalization of Enals. Angewandte Chemie - International Edition, 2022, 61, e202112632.	7.2	20
3	Asymmetric synthesis of cyclic \hat{l}^2 -amino carbonyl derivatives by a formal [3 + 2] photocycloaddition. Chemical Communications, 2022, 58, 1334-1337.	2.2	17
4	Oxidized multiwalled nanotubes as efficient carbocatalyst for the general synthesis of azines. Journal of Catalysis, 2022, 406, 174-183.	3.1	5
5	Intramolecular Hydrogen-Bond Activation: Strategies, Benefits, and Influence in Catalysis. ACS Organic & Inorganic Au, 2022, 2, 197-204.	1.9	11
6	Continuous-flow synthesis of alkyl zinc sulfinates for the direct photofunctionalization of heterocycles. Chemical Communications, 2022, 58, 4611-4614.	2.2	4
7	Tuning the Activity–Stability Balance of Photocatalytic Organic Materials for Oxidative Coupling Reactions. ACS Applied Materials & Interfaces, 2022, 14, 16258-16268.	4.0	16
8	Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Advanced Synthesis and Catalysis, 2022, 364, 1689-1694.	2.1	6
9	Enantioselective Addition of Remote Alkyl Radicals to Double Bonds by Photocatalytic Proton-Coupled Electron Transfer (PCET) Deconstruction of Unstrained Cycloalkanols. Organic Letters, 2022, 24, 3123-3127.	2.4	8
10	Predesigned Covalent Organic Frameworks as Effective Platforms for Pd(II) Coordination Enabling Crossâ€Coupling Reactions under Sustainable Conditions. Advanced Sustainable Systems, 2022, 6, .	2.7	11
11	General electrochemical Minisci alkylation of $\langle i \rangle N \langle i \rangle$ -heteroarenes with alkyl halides. Chemical Science, 2022, 13, 6512-6518.	3.7	14
12	Simple Rules for Complex Near-Glass-Transition Phenomena in Medium-Sized Schiff Bases. International Journal of Molecular Sciences, 2022, 23, 5185.	1.8	3
13	Isothiourea-catalysed enantioselective radical conjugate addition under batch and flow conditions. Chemical Communications, 2022, 58, 7277-7280.	2.2	4
14	Single walled carbon nanotubes with encapsulated Pt(II) photocatalyst for the oxidation of sulfides in water. Journal of Catalysis, 2022, 413, 274-283.	3.1	2
15	Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. Nano Research, 2021, 14, 458-465.	5. 8	12
16	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie, 2021, 133, 4605-4610.	1.6	0
17	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie - International Edition, 2021, 60, 4555-4560.	7.2	15
18	Biodegradable base stock oils obtained from ricinoleic acid using C8 alcohols and process integration into a biodiesel industry. Biomass Conversion and Biorefinery, 2021, 11, 803-814.	2.9	6

#	Article	IF	Citations
19	Enantioselective vinylogous-Mukaiyama-type dearomatisation by anion-binding catalysis. Chemical Communications, 2021, 57, 9244-9247.	2.2	5
20	Luminescent cis-Bis(bipyridyl)ruthenium(II) Complexes with 1,2-Azolylamidino Ligands: Photophysical, Electrochemical Studies, and Photocatalytic Oxidation of Thioethers. Inorganic Chemistry, 2021, 60, 7008-7022.	1.9	3
21	Enhancing Visible-Light Photocatalysis <i>via</i> Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Endohedral Function Organic Dyes & Endohedr	4.0	19
22	Recent Visible Light and Metal Free Strategies in [2+2] and [4+2] Photocycloadditions. European Journal of Organic Chemistry, 2021, 2021, 3303-3321.	1.2	28
23	Enantioselective Organocatalyzed <i>aza</i> êMichael Addition Reaction of 2â€Hydroxybenzophenone Imines to Nitroolefins under Batch and Flow Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3845-3851.	2.1	7
24	Photocatalytic Oxidation Reactions Mediated by Covalent Organic Frameworks and Related Extended Organic Materials. Frontiers in Chemistry, 2021, 9, 708312.	1.8	10
25	Visible-Light Radical–Radical Coupling vs. Radical Addition: Disentangling a Mechanistic Knot. Catalysts, 2021, 11, 922.	1.6	2
26	Organocatalytic Strategies for the Development of the Enantioselective Inverseâ€electronâ€demand Heteroâ€Dielsâ€Alder Reaction. Chemistry - A European Journal, 2021, 27, 12509-12520.	1.7	29
27	Enantioselective Inverse-Electron Demand Aza-Diels–Alder Reaction: ipso,α-Selectivity of Silyl Dienol Ethers. ACS Catalysis, 2021, 11, 12133-12145.	5.5	17
28	Photoredox Heterobimetallic Dual Catalysis Using Engineered Covalent Organic Frameworks. ACS Catalysis, 2021, 11, 12344-12354.	5.5	59
29	Frontispiece: Organocatalytic Strategies for the Development of the Enantioselective Inverseâ€electronâ€demand Heteroâ€Dielsâ€Alder Reaction. Chemistry - A European Journal, 2021, 27, .	1.7	0
30	Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers. Chemical Communications, 2021, 57, 3046-3049.	2.2	14
31	Enantioselective vinylogous Mukaiyama aldol reaction of \hat{l} ±-ketoesters under bifunctional organocatalysis. Chemical Communications, 2021, 57, 11665-11668.	2.2	2
32	Rutheniumâ€ <i>pâ€</i> cymene Complex Sideâ€Wall Covalently Bonded to Carbon Nanotubes as Efficient Hybrid Transfer Hydrogenation Catalyst. ChemCatChem, 2021, 13, 5156-5165.	1.8	3
33	Solvent-Free Visible Light Photocatalytic Oxidation Processes Mediated by Transparent Films of an Imine-Based Organic Polymer. Catalysts, 2021, 11, 1426.	1.6	1
34	Glass-forming Schiff bases: Peculiar self-organizing systems with bifurcated hydrogen bonds. Journal of Molecular Liquids, 2021, , 118052.	2.3	2
35	Multifunctional carbon nanotubes covalently coated with imine-based covalent organic frameworks: exploring structure–property relationships through nanomechanics. Nanoscale, 2020, 12, 1128-1137.	2.8	20
36	Asymmetric Synthesis of \hat{l}_{\pm} -Trifluoromethylthio- \hat{l}^2 -Amino Acids under Phase Transfer Catalysis. Organic Letters, 2020, 22, 219-223.	2.4	38

#	Article	IF	CITATIONS
37	Visible Light Photocatalytic Synthesis of Tetrahydroquinolines Under Batch and Flow Conditions. European Journal of Organic Chemistry, 2020, 2020, 5995-5999.	1.2	13
38	Photocatalytic Water-Soluble Cationic Platinum(II) Complexes Bearing Quinolinate and Phosphine Ligands. Inorganic Chemistry, 2020, 59, 13845-13857.	1.9	6
39	Visible light mediated photocatalytic $[2\hat{a}\in\%+\hat{a}\in\%2]$ cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Communications Chemistry, 2020, 3, .	2.0	11
40	Onâ€Surface Driven Formal Michael Addition Produces m â€Polyaniline Oligomers on Pt(111). Angewandte Chemie - International Edition, 2020, 59, 23220-23227.	7.2	5
41	Onâ€Surface Driven Formal Michael Addition Produces m â€Polyaniline Oligomers on Pt(111). Angewandte Chemie, 2020, 132, 23420-23427.	1.6	1
42	Visible light photocatalysis $\hat{a} \in \text{from racemic to asymmetric activation strategies. Chemical Communications, 2020, 56, 11169-11190.}$	2.2	71
43	Metal-free visible light-promoted synthesis of isothiazoles: a catalytic approach for N–S bond formation from iminyl radicals under batch and flow conditions. Green Chemistry, 2020, 22, 6792-6797.	4.6	17
44	Stereocontrolled Addition of Scrambling <i>ortho</i> -Sulfinyl Carbanions: Easy Access to Homopropargylamines and î±-Allenylamines. Organic Letters, 2020, 22, 2431-2436.	2.4	5
45	Asymmetric trifluoromethylthiolation of azlactones under chiral phase transfer catalysis. Organic and Biomolecular Chemistry, 2020, 18, 2914-2920.	1.5	10
46	Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 2020, 10, 720.	1.6	47
47	Unlocking the direct photocatalytic difluoromethylation of Cî€N bonds. Chemical Communications, 2020, 56, 3769-3772.	2.2	30
48	Boron Dipyrromethene (BODIPY) as Electronâ€Withdrawing Group in Asymmetric Copperâ€Catalyzed [3+2] Cycloadditions for the Synthesis of Pyrrolidineâ€Based Biological Sensors. Advanced Synthesis and Catalysis, 2020, 362, 1345-1355.	2.1	8
49	Enantioselective Aminocatalytic [2 + 2] Cycloaddition through Visible Light Excitation. ACS Catalysis, 2020, 10, 5335-5346.	5.5	34
50	The role of catalyst–support interactions in oxygen evolution anodes based on Co(OH) ₂ nanoparticles and carbon microfibers. Catalysis Science and Technology, 2020, 10, 4513-4521.	2.1	9
51	Incorporation of photocatalytic Pt(II) complexes into imine-based layered covalent organic frameworks (COFs) through monomer truncation strategy. Applied Catalysis B: Environmental, 2020, 272, 119027.	10.8	64
52	Organocatalytic <i>vs.</i> Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 6446-6456.	1.6	17
53	α-Functionalization of Imines via Visible Light Photoredox Catalysis. Catalysts, 2020, 10, 562.	1.6	48
54	Enantioselective Conjugate Azidation of <i>l±,l²</i> lafelInsaturated Ketones under Bifunctional Organocatalysis by Direct Activation of TMSN ₃ . Advanced Synthesis and Catalysis, 2019, 361, 4790-4796.	2.1	19

#	Article	IF	Citations
55	Imineâ∈Based Covalent Organic Frameworks as Photocatalysts for Metal Free Oxidation Processes under Visible Light Conditions. ChemCatChem, 2019, 11, 4916-4922.	1.8	59
56	Conjugated porous polymer based on BOPHY dyes as photocatalyst under visible light. Applied Catalysis B: Environmental, 2019, 258, 117933.	10.8	46
57	Visible light photocatalytic asymmetric synthesis of pyrrolo[1,2- <i>a</i>) indoles <i>via</i> intermolecular [3+2] cycloaddition. Chemical Communications, 2019, 55, 11303-11306.	2.2	22
58	Switching acidic and basic catalysis through supramolecular functionalization in a porous 3D covalent imine-based material. Catalysis Science and Technology, 2019, 9, 6007-6014.	2.1	10
59	In vitro and in vivo anticancer effects of two quinoline–platinum(II) complexes on human osteosarcoma models. Cancer Chemotherapy and Pharmacology, 2019, 83, 681-692.	1.1	28
60	Intramolecular Homolytic Substitution Enabled by Photoredox Catalysis: Sulfur, Phosphorus, and Silicon Heterocycle Synthesis from Aryl Halides. Organic Letters, 2019, 21, 5295-5300.	2.4	34
61	Chromoselective access to Z- or E- allylated amines and heterocycles by a photocatalytic allylation reaction. Nature Communications, 2019, 10, 2634.	5.8	38
62	Mesityl or Imide Acridinium Photocatalysts: Accessible Versus Inaccessible Chargeâ€Transfer States in Photoredox Catalysis. ChemPhotoChem, 2019, 3, 609-612.	1.5	8
63	8-Mercaptoquinoline as a Ligand for Enhancing the Photocatalytic Activity of Pt(II) Coordination Complexes: Reactions and Mechanistic Insights. Journal of Organic Chemistry, 2019, 84, 6437-6447.	1.7	26
64	Size-selective mesoporous silica-based Pt(II) complex as efficient and reusable photocatalytic material. Journal of Catalysis, 2019, 373, 374-383.	3.1	16
65	Role of intramolecular hydrogen bonds and electron withdrawing groups in the acidity of aldimines and ketimines: a density functional theory study. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	2
66	BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions. Chemical Science, 2019, 10, 4346-4351.	3.7	16
67	Nucleophilic halo-Michael addition under Lewis-base activation. Chemical Communications, 2019, 55, 12936-12939.	2.2	1
68	Intramolecular Hydrogen Bond Activation of Azaâ€Methylene Imines in Hydrogen Bond Bifunctional Catalysis – A Density Functional Theory Study. European Journal of Organic Chemistry, 2019, 2019, 574-581.	1.2	10
69	Asymmetric vinylogous Mukaiyama aldol reaction of isatins under bifunctional organocatalysis: enantioselective synthesis of substituted 3-hydroxy-2-oxindoles. Chemical Communications, 2018, 54, 2781-2784.	2.2	27
70	Intramolecular hydrogen-bond activation for the addition of nucleophilic imines: 2-hydroxybenzophenone as a chemical auxiliary. Chemical Communications, 2018, 54, 3399-3402.	2.2	11
71	2â∈Hydroxybenzophenone as a Chemical Auxiliary for the Activation of Ketiminoesters for Highly Enantioselective Addition to Nitroalkenes under Bifunctional Catalysis. Angewandte Chemie - International Edition, 2018, 57, 5350-5354.	7.2	30
72	Asymmetric induction in photocatalysis – Discovering a new side to light-driven chemistry. Tetrahedron Letters, 2018, 59, 1286-1294.	0.7	62

#	Article	IF	Citations
73	Intramolecular Hydrogen Bond Activation: Thiourea-Organocatalyzed Enantioselective 1,3-Dipolar Cycloaddition of Salicylaldehyde-Derived Azomethine Ylides with Nitroalkenes. ACS Catalysis, 2018, 8, 1884-1890.	5.5	63
74	A General Asymmetric Formal Synthesis of Aza-Baylis-Hillman Type Products under Bifunctional Catalysis. Chemistry - A European Journal, 2018, 24, 3072-3072.	1.7	2
75	Asymmetric Synthesis of Secondary and Tertiary Propargylic Alcohols by Umpolung of Acetylenic Sulfones and <i>ortho</i> -Sulfinyl Carbanions. Journal of Organic Chemistry, 2018, 83, 1940-1947.	1.7	10
76	Bioinspired Electroâ€Organocatalytic Material Efficient for Hydrogen Production. Chemistry - A European Journal, 2018, 24, 3305-3313.	1.7	6
77	2â€Hydroxybenzophenone as a Chemical Auxiliary for the Activation of Ketiminoesters for Highly Enantioselective Addition to Nitroalkenes under Bifunctional Catalysis. Angewandte Chemie, 2018, 130, 5448-5452.	1.6	12
78	A General Asymmetric Formal Synthesis of Azaâ€Baylis–Hillman Type Products under Bifunctional Catalysis. Chemistry - A European Journal, 2018, 24, 3117-3121.	1.7	23
79	Asymmetric synthesis of Rauhut–Currier-type esters <i>via</i> Mukaiyama–Michael reaction to acylphosphonates under bifunctional catalysis. Chemical Communications, 2018, 54, 13941-13944.	2.2	9
80	Asymmetric [2,3]-Wittig Rearrangement: Synthesis of Homoallylic, Allenylic, and Enynyl α-Benzyl Alcohols. Organic Letters, 2018, 20, 8047-8051.	2.4	13
81	A Bifunctional Photoaminocatalyst for the Alkylation of Aldehydes: Design, Analysis, and Mechanistic Studies. ACS Catalysis, 2018, 8, 5928-5940.	5.5	46
82	Development and Application of Asymmetric Organocatalytic Mukaiyama and Vinylogous Mukaiyama‶ype Reactions. Chemistry - A European Journal, 2018, 24, 10906-10933.	1.7	43
83	Frontispiece: Development and Application of Asymmetric Organocatalytic Mukaiyama and Vinylogous Mukaiyama-Type Reactions. Chemistry - A European Journal, 2018, 24, .	1.7	0
84	Squaramideâ€IRMOFâ€16 Analogue for Catalysis of Solventâ€Free, Epoxide Ringâ€Opening Tandem and Multicomponent Reactions. ChemCatChem, 2018, 10, 3995-3998.	1.8	13
85	Novel Oxidative Ugi Reaction for the Synthesis of Highly Active, Visibleâ€Light, Imideâ€Acridinium Organophotocatalysts. Chemistry - A European Journal, 2018, 24, 12509-12514.	1.7	33
86	Visible‣ight Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie - International Edition, 2017, 56, 7826-7830.	7.2	47
87	Visible‣ight Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie, 2017, 129, 7934-7938.	1.6	8
88	Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions. Chemical Communications, 2017, 53, 7764-7767.	2.2	50
89	"Anti-Michael addition―of Grignard reagents to sulfonylacetylenes: synthesis of alkynes. Organic and Biomolecular Chemistry, 2017, 15, 3901-3908.	1.5	8
90	Mechanistic added value of a trans-Sulfonamide-Platinum-Complex in human melanoma cell lines and synergism with cis-Platin. Molecular Cancer, 2017, 16, 45.	7.9	12

#	Article	IF	CITATIONS
91	Asymmetric Synthesis of Rauhut–Currier type Products by a Regioselective Mukaiyama Reaction under Bifunctional Catalysis. Journal of the American Chemical Society, 2017, 139, 672-679.	6.6	57
92	Thiol–ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides. Chemical Communications, 2017, 53, 10463-10466.	2.2	60
93	Effect of electronic and steric properties of 8-substituted quinolines in gold(III) complexes: Synthesis, electrochemistry, stability, interactions and antiproliferative studies. Journal of Inorganic Biochemistry, 2017, 174, 111-118.	1.5	16
94	Synthesis of 3â€Benzazepines by Metalâ€Free Oxidative Câ€"H Bond Functionalizationâ€"Ring Expansion Tandem Reaction. Advanced Synthesis and Catalysis, 2016, 358, 4049-4056.	2.1	32
95	Pt(<scp>ii</scp>) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes. Chemical Communications, 2016, 52, 9137-9140.	2.2	79
96	Mono―and Bimetallic Alkynyl Metallocenes and Halfâ€Sandwich Complexes: A Simple and Versatile Synthetic Approach. Chemistry - A European Journal, 2016, 22, 15645-15649.	1.7	7
97	Weakly bounded intermediates as a previous step towards highly-enantioselective iminium type additions of \hat{l}^2 -keto-sulfoxides and -sulfones. Journal of Molecular Catalysis A, 2016, 423, 308-318.	4.8	9
98	Stereodivergent Aminocatalytic Synthesis of Z - and E -Trisubstituted Double Bonds from Alkynals. Chemistry - A European Journal, 2016, 22, $16329-16329$.	1.7	0
99	Stereodivergent Aminocatalytic Synthesis of <i>Z</i> ―and <i>E</i> ―Trisubstituted Double Bonds from Alkynals. Chemistry - A European Journal, 2016, 22, 16467-16477.	1.7	4
100	Old tricks, new dogs: organocatalytic dienamine activation of \hat{l}_{\pm},\hat{l}^2 -unsaturated aldehydes. Chemical Society Reviews, 2016, 45, 6812-6832.	18.7	140
101	Asymmetric Synthesis of 1,2-Diamines bearing Tetrasubstituted Centers from Nonstabilized Azomethine Ylides and $\langle i \rangle N \langle i \rangle$ -Sulfinylketimines under Br \tilde{A}_i nsted Acid Catalysis. Organic Letters, 2016, 18, 92-95.	2.4	25
102	Oneâ∈Pot Asymmetric Synthesis of Cyclopropanes with Quaternary Centers Starting From Bromonitroalkenes under Aminocatalytic Conditions. ChemPlusChem, 2015, 80, 1595-1600.	1.3	9
103	Oxidative CH Bond Functionalization and Ring Expansion with TMSCHN ₂ : A Copper(I)â€Catalyzed Approach to Dibenzoxepines and Dibenzoazepines. Angewandte Chemie - International Edition, 2015, 54, 5049-5053.	7.2	50
104	Dienamine and Friedel–Crafts Oneâ€Pot Synthesis, and Antitumor Evaluation of Diheteroarylalkanals. Chemistry - A European Journal, 2015, 21, 8237-8241.	1.7	22
105	Synthesis of Enantiopure 1,5â€Enynes and 1,5â€Diynes with Propargylic Quaternary Centers. European Journal of Organic Chemistry, 2015, 2015, 3314-3319.	1.2	7
106	Inter- and Intramolecular Dienamine Organocatalytic Strategies for the Synthesis of Tetrahydroisoquinolines and Tricyclic Derivatives via [3+2] and [4+2] Cycloadditions. Synlett, 2015, 26, 1940-1954.	1.0	13
107	Gold(III) complexes with hydroxyquinoline, aminoquinoline and quinoline ligands: Synthesis, cytotoxicity, DNA and protein binding studies. Journal of Inorganic Biochemistry, 2015, 153, 339-345.	1.5	27
108	A straightforward alkynylation of Li and Mg metalated heterocycles with sulfonylacetylenes. Chemical Communications, 2015, 51, 346-349.	2.2	19

#	Article	IF	CITATIONS
109	[8+2] Formal Cycloaddition Reactions of Tropones with Azlactones under BrÃ,nsted Acid Catalysis and Synthesis of αâ€(2â€Tropyl), αâ€Alkyl αâ€Amino Acids. European Journal of Organic Chemistry, 2014, 2014, 1	39 5 :1400.	29
110	Evaluation of novel trans-sulfonamide platinum complexes against tumor cell lines. European Journal of Medicinal Chemistry, 2014, 76, 360-368.	2.6	22
111	Sulfonyl Acetylenes as Alkynylating Reagents Under Radical or Anionic Conditions. European Journal of Organic Chemistry, 2014, 2014, 1577-1588.	1.2	35
112	Control of the Dual Reactivity (Iminium-Dienamine) of \hat{l}^2 -Arylmethyl $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes in Organocatalytic 1,3-Dipolar Cycloadditions with <i>N</i> Benzoyl <i>C,N</i> -Cyclic Azomethine Imines. Journal of Organic Chemistry, 2014, 79, 10417-10433.	1.7	50
113	Organocatalytic transformations of alkynals, alkynones, propriolates, and related electron-deficient alkynes. Tetrahedron, 2014, 70, 9145-9173.	1.0	72
114	Highly Enantioselective Construction of Tricyclic Derivatives by the Desymmetrization of Cyclohexadienones. Angewandte Chemie - International Edition, 2014, 53, 8184-8189.	7.2	68
115	1,4-Michael additions of cyclic- \hat{l}^2 -ketoesters catalyzed by DNA in aqueous media. Catalysis Communications, 2014, 44, 10-14.	1.6	4
116	Novel clioquinol and its analogous platinum complexes: importance, role of the halogen substitution and the hydroxyl group of the ligand. Dalton Transactions, 2013, 42, 13343.	1.6	62
117	Expanding the synthesis of new trans-sulfonamide platinum complexes: Cytotoxicity, SAR, fluorescent cell assays and stability studies. Journal of Inorganic Biochemistry, 2013, 127, 128-140.	1.5	17
118	Asymmetric synthesis of trans-dihydroarylfurans in a Friedel–Crafts/substitution domino reaction under squaramide catalysis. Chemical Communications, 2013, 49, 2001.	2.2	84
119	Arylsulfonylacetylenes as Alkynylating Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 403-407.	0.8	2
120	Applications of asymmetric organocatalysis in medicinal chemistry. Chemical Society Reviews, 2013, 42, 774-793.	18.7	374
121	Synthesis of Alkylâ€Ynolâ€Ethers by "Antiâ€Michael Addition―of Metal Alkoxides to βâ€Substituted Alkynylsulfones. European Journal of Organic Chemistry, 2013, 2013, 4405-4409.	1.2	16
122	New Methods in Organic Synthesis Through Copper-Catalyzed Borylation Reactions: Stereoselective Synthesis of 1,4-Diols and Vinylboronates. Synlett, 2013, 24, 804-812.	1.0	8
123	Metallic organophosphates as catalysts in asymmetric synthesis: a return journey. Organic and Biomolecular Chemistry, 2012, 10, 5001.	1.5	81
124	Copper(I)-Catalyzed Formal Carboboration of Alkynes: Synthesis of Tri- and Tetrasubstituted Vinylboronates. Journal of the American Chemical Society, 2012, 134, 15165-15168.	6.6	231
125	Asymmetric Synthesis of Cyclobutanes by a Formal [2+2] Cycloaddition Controlled by Dienamine Catalysis. Angewandte Chemie - International Edition, 2012, 51, 9734-9736.	7.2	44
126	Enantioselective aza-Henry reactions of cyclic \hat{l}_{\pm} -carbonyl ketimines under bifunctional catalysis. Chemical Communications, 2012, 48, 9759.	2.2	100

#	Article	IF	CITATIONS
127	Asymmetric Intramolecular Pauson–Khand Reaction Mediated by a Remote Sulfenyl or Sulfinyl Group. Journal of Organic Chemistry, 2012, 77, 6583-6599.	1.7	11
128	Enantioselective Synthesis of 4â€Isoxazolines by 1,3â€Dipolar Cycloadditions of Nitrones to Alkynals Catalyzed by Fluorodiphenylmethylpyrrolidines. Advanced Synthesis and Catalysis, 2012, 354, 1665-1671.	2.1	46
129	Arylsulfonylacetylenes as Alkynylating Reagents of Cī£;H Bonds Activated with Lithium Bases. Angewandte Chemie - International Edition, 2012, 51, 2712-2716.	7.2	56
130	Modular Threeâ€Component Organocatalytic Synthesis of 3,4â€Disubstituted Pyrroles by a Oneâ€Pot Domino Reaction. ChemCatChem, 2012, 4, 976-979.	1.8	19
131	Expanding the Scope of Arylsulfonylacetylenes as Alkynylating Reagents and Mechanistic Insights in the Formation of Csp ² Csp and Csp ³ Csp Bonds from Organolithiums. Chemistry - A European Journal, 2012, 18, 8414-8422.	1.7	42
132	Highly Stereoselective Synthesis of Tertiary Propargylic Centers and Their Isomerization to Enantiomerically Enriched Allenes. Chemistry - A European Journal, 2012, 18, 9775-9779.	1.7	22
133	Tandem Cyclization–Michael Reaction by Combination of Metal- and Organocatalysis. Journal of Organic Chemistry, 2011, 76, 7287-7293.	1.7	18
134	Asymmetric Synthesis of α-Alkyl α-Selenocarbonyl Compounds Catalyzed by Bifunctional Organocatalysts. Organic Letters, 2011, 13, 3052-3055.	2.4	54
135	Novel N-sulfonamide trans-platinum complexes: synthesis, reactivity and in vitro evaluation. MedChemComm, 2011, 2, 789.	3.5	23
136	Asymmetric synthesis of quaternary \hat{l}_{\pm} -amino acid derivatives and their fluorinated analogues. Amino Acids, 2011, 41, 559-573.	1.2	16
137	Synthesis of Chiral Cyclic Nitrones by Asymmetric Addition of βâ€Ketosulfones to Nitroalkenes followed by Reductive Cyclization. Chemistry - A European Journal, 2011, 17, 984-992.	1.7	41
138	Complete Stereocontrol in Organocatalytic Additions of βâ€Ketosulfoxides to Conjugated Aldehydes. Chemistry - A European Journal, 2011, 17, 4030-4037.	1.7	12
139	Squaramides: Bridging from Molecular Recognition to Bifunctional Organocatalysis. Chemistry - A European Journal, 2011, 17, 6890-6899.	1.7	641
140	Synthesis of 4-Hydroxy-4H-chromenes by Reaction of Salicylic Aldehydes with Alkynals Catalyzed by Silyl Prolinol Ethers. Synthesis, 2011, 2011, 1840-1846.	1.2	26
141	Anticancer platinum complexes as non-innocent compounds for catalysis in aqueous media. Chemical Communications, 2010, 46, 454-456.	2.2	39
142	Influence of the Reaction Conditions on the Evolution of the Michael Addition of βâ€Keto Sulfones to α,βâ€Unsaturated Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 4482-4491.	1.2	19
143	Synthesis of Unfunctionalized Carbonated Fragments Containing Two Vicinal Chiral Centers: Stereocontrolled Benzylation of Vinylsulfones Mediated by a Remote Sulfinyl Group. Chemistry - A European Journal, 2010, 16, 8968-8971.	1.7	19
144	Asymmetric Synthesis of 4â€Aminoâ€4 <i>H</i> à€Chromenes by Organocatalytic Oxaâ€Michael/Azaâ€Baylis–Hillman Tandem Reactions. Chemistry - A European Journal, 2010, 16, 9453-9456.	1.7	78

#	Article	IF	CITATIONS
145	New reactions of anticancer-platinum complexes and their intriguing behaviour under various experimental conditions. Dalton Transactions, 2010, 39, 10601.	1.6	22
146	The role of the sulfinyl group in the copper catalyzed benzyl reactions from 2- <i>p</i> -tolylsulfinylbenzylstannanes. Journal of Sulfur Chemistry, 2009, 30, 370-376.	1.0	2
147	Synthesis of Enantiomerically Pure Allenes with Central and Axial Chirality Mediated by a Remote Sulfinyl Group. Synthesis, 2009, 2009, 3339-3349.	1.2	9
148	Oneâ€Pot Synthesis of Pentasubstituted Cyclohexanes by a Michael Addition Followed by a Tandem Inter–Intra Double Henry Reaction. Chemistry - A European Journal, 2009, 15, 6576-6580.	1.7	59
149	Complete Regio―and Stereoselectivity Control in the Halohydroxylation of Nonâ€activated Allenes Mediated by a Remote Sulfinyl Group. Angewandte Chemie - International Edition, 2009, 48, 3155-3157.	7.2	15
150	Synthesis and Stereoselective Halogenolysis of Optically Pure Benzylstannanes. Journal of Organic Chemistry, 2009, 74, 2145-2152.	1.7	9
151	A New Strategy for the Synthesis of Optically Pure β-Fluoroalkyl β-Amino Acid Derivatives. Organic Letters, 2009, 11, 641-644.	2.4	38
152	The organocatalytic addition of bis(arylsulfonyl)methane to $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes and the synthesis of optically-enriched 3-methyl-alkanols. Chemical Communications, 2009, , 4435.	2.2	43
153	Monoalkylation of primary amines and N-sulfinylamides. Chemical Communications, 2009, , 404-406.	2.2	47
154	Asymmetric 1,4â€Addition of Oxazolones to Nitroalkenes by Bifunctional Cinchona Alkaloid Thiourea Organocatalysts: Synthesis of α,αâ€Disubstituted αâ€Amino Acids. Chemistry - A European Journal, 2008, 14, 10958-10966.	1.7	110
155	An Unexpected Organocatalytic Asymmetric Tandem Michael/Morita–Baylis–Hillman Reaction. Angewandte Chemie - International Edition, 2008, 47, 121-125.	7.2	130
156	Configurational Control of Benzyl Carbanion–Copper Complexes by Sulfinyl Groups: Synthesis of Optically Pure Allenes with Central and Axial Chirality. Angewandte Chemie - International Edition, 2008, 47, 6836-6839.	7.2	30
157	Anionic–Anionic Asymmetric Tandem Reactions: Oneâ€Pot Synthesis of Optically Pure Fluorinated Indolines from 2â€∢i>pà€₹olylsulfinyl Alkylbenzenes. Angewandte Chemie - International Edition, 2008, 47, 7941-7944.	7.2	53
158	Efficient synthesis of disulfides by air oxidation of thiols under sonication. Green Chemistry, 2008, 10, 706.	4.6	137
159	Organocatalytic Asymmetric Synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}$ -Disubstituted \hat{l}_{\pm} -Amino Acids and Derivatives. Journal of the American Chemical Society, 2008, 130, 12031-12037.	6.6	173
160	Organocatalytic asymmetric vinylogous addition to quinones – formation of optically active α-aryl ketones. Chemical Communications, 2008, , 632-634.	2.2	74
161	Organocatalytic Asymmetric Direct $\hat{l}\pm$ -Alkynylation of Cyclic \hat{l}^2 -Ketoesters. Journal of the American Chemical Society, 2007, 129, 441-449.	6.6	153
162	Organocatalytic asymmetric "anti-Michael―reaction of β-ketoesters. Chemical Communications, 2007, , 3921.	2.2	41

#	Article	IF	CITATIONS
163	π–π Stacking versus Steric Effects in Stereoselectivity Control: Highly Diastereoselective Synthesis ofsyn-1,2-Diarylpropylamines. Chemistry - A European Journal, 2007, 13, 6179-6195.	1.7	57
164	Organocatalytic Highly Enantioselective \hat{l}_{\pm} -Arylation of \hat{l}^2 -Ketoesters. Angewandte Chemie - International Edition, 2007, 46, 5515-5519.	7.2	94
165	Asymmetric Organocatalytic α-Arylation of Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 5520-5523.	7.2	174
166	Cover Picture: Organocatalytic Highly Enantioselective α-Arylation of β-Ketoesters / Asymmetric Organocatalytic α-Arylation of Aldehydes (Angew. Chem. Int. Ed. 29/2007). Angewandte Chemie - International Edition, 2007, 46, 5449-5449.	7.2	2
167	Oxidative Addition of Pd(0) to Arâ^'SO2R Bonds:  Heck-Type Reactions of Sulfones. Organic Letters, 2006, 8, 2683-2686.	2.4	20
168	Preparation of \hat{l}_{\pm} -amino ketones, \hat{l}^2 -amino hydroxylamines using asymmetric aza-Henry reactions of N-p-tolylsulfinylimines with nitroethane. Tetrahedron, 2006, 62, 12197-12203.	1.0	28
169	Highly Stereoselective Benzylation of N-Sulfinylketimines ChemInform, 2006, 37, no.	0.1	0
170	Asymmetric Aza-Henry Reactions from N-p-Tolylsulfinylimines ChemInform, 2006, 37, no.	0.1	0
171	Highly Stereoselective Reactions of \hat{I}^3 -Sulfinyl Carbanions with Achiral Imines. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1209-1215.	0.8	2
172	Highly Stereoselective Vinylogous Pummerer Reaction Mediated by Me3SiX ChemInform, 2005, 36, no.	0.1	0
173	A General Method for the Preparation of N-Sulfonyl Aldimines and Ketimines ChemInform, 2005, 36, no.	0.1	0
174	Highly Stereoselective Reactions of \hat{I}^3 -Sulfinyl Carbanions with Achiral Imines. ChemInform, 2005, 36, no.	0.1	0
175	Highly Stereoselective Vinylogous Pummerer Rearrangement. ChemInform, 2005, 36, no.	0.1	0
176	Highly Stereoselective Vinylogous Pummerer Rearrangement. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1497-1498.	0.8	5
177	Highly Stereoselective Benzylation of N-Sulfinylketimines. Journal of the American Chemical Society, 2005, 127, 13048-13054.	6.6	43
178	A New General Method for the Preparation of N-Sulfonyloxaziridines. Organic Letters, 2005, 7, 5493-5496.	2.4	50
179	Asymmetric Aza-Henry Reactions fromN-p-Tolylsulfinylimines. Organic Letters, 2005, 7, 4407-4410.	2.4	49
180	Highly Stereoselective Vinylogous Pummerer Reaction Mediated by Me3SiX. Organic Letters, 2005, 7, 19-22.	2.4	39

#	Article	IF	CITATIONS
181	A General Method for the Preparation ofN-Sulfonyl Aldimines and Ketiminesâ€. Organic Letters, 2005, 7, 179-182.	2.4	98
182	Approaches to the stereocontolled synthesis of anthracyclinones: Preparation of optically pure bicyclic intermediates for the regioselective construction of the tetracyclic skeleton. Arkivoc, 2005, 2005, 253-265.	0.3	3
183	Stereocontrolled Reactions Mediated by a Remote Sulfoxide Group: Synthesis of Optically Pure anti-Î ² -Amino Alcohols ChemInform, 2004, 35, no.	0.1	0
184	A Novel Asymmetric Vinylogous Tin-Pummerer Rearrangement ChemInform, 2004, 35, no.	0.1	0
185	Synthesis of chiral ortho-(p-tolylsulfinyl) benzyl ketones. Tetrahedron, 2004, 60, 10067-10075.	1.0	19
186	Stereoselective Addition of α-Sulfinyl Carbanions toN-p-tolylsulfinylketimines: Synthesis of Optically Pure 1,2,2â€~-Trialkyl-2-aminoethanols. Journal of Organic Chemistry, 2004, 69, 4454-4463.	1.7	24
187	A Novel Asymmetric Vinylogous Tin-Pummerer Rearrangement. Organic Letters, 2004, 6, 1757-1760.	2.4	18
188	Facile Synthesis of Optically Pure 1,2-Diaryl (and 1-Alkyl-2-aryl) Ethyl and Propylamines ChemInform, 2003, 34, no.	0.1	0
189	Stereocontrolled Reactions Mediated by a Remote Sulfoxide Group:  Synthesis of Optically Pureanti-β-Amino Alcohols. Organic Letters, 2003, 5, 4513-4516.	2.4	51
190	Facile Synthesis of Optically Pure 1,2-Diaryl (and 1-Alkyl-2-aryl) Ethyl and Propylamines. Organic Letters, 2003, 5, 677-680.	2.4	62
191	Asymmetric Transformations Mediated by Sulfinyl Groups. , 0, , 55-159.		7
192	Fluorinated Sulfinates as Source of Alkyl Radicals in the Photoâ€Enantiocontrolled βâ€Functionalization of Enals. Angewandte Chemie, 0, , e202112632.	1.6	1