List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6776116/publications.pdf Version: 2024-02-01

LOSE ALEMAN

#	Article	IF	CITATIONS
1	Squaramides: Bridging from Molecular Recognition to Bifunctional Organocatalysis. Chemistry - A European Journal, 2011, 17, 6890-6899.	1.7	641
2	Applications of asymmetric organocatalysis in medicinal chemistry. Chemical Society Reviews, 2013, 42, 774-793.	18.7	374
3	Copper(I)-Catalyzed Formal Carboboration of Alkynes: Synthesis of Tri- and Tetrasubstituted Vinylboronates. Journal of the American Chemical Society, 2012, 134, 15165-15168.	6.6	231
4	Asymmetric Organocatalytic α-Arylation of Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 5520-5523.	7.2	174
5	Organocatalytic Asymmetric Synthesis of α,α-Disubstituted α-Amino Acids and Derivatives. Journal of the American Chemical Society, 2008, 130, 12031-12037.	6.6	173
6	Organocatalytic Asymmetric Direct Î \pm -Alkynylation of Cyclic Î 2 -Ketoesters. Journal of the American Chemical Society, 2007, 129, 441-449.	6.6	153
7	Old tricks, new dogs: organocatalytic dienamine activation of α,β-unsaturated aldehydes. Chemical Society Reviews, 2016, 45, 6812-6832.	18.7	140
8	Efficient synthesis of disulfides by air oxidation of thiols under sonication. Green Chemistry, 2008, 10, 706.	4.6	137
9	An Unexpected Organocatalytic Asymmetric Tandem Michael/Morita–Baylis–Hillman Reaction. Angewandte Chemie - International Edition, 2008, 47, 121-125.	7.2	130
10	Asymmetric 1,4â€Addition of Oxazolones to Nitroalkenes by Bifunctional Cinchona Alkaloid Thiourea Organocatalysts: Synthesis of α,αâ€Disubstituted αâ€Amino Acids. Chemistry - A European Journal, 2008, 14, 10958-10966.	1.7	110
11	Enantioselective aza-Henry reactions of cyclic α-carbonyl ketimines under bifunctional catalysis. Chemical Communications, 2012, 48, 9759.	2.2	100
12	A General Method for the Preparation ofN-Sulfonyl Aldimines and Ketiminesâ€. Organic Letters, 2005, 7, 179-182.	2.4	98
13	Organocatalytic Highly Enantioselective α-Arylation of β-Ketoesters. Angewandte Chemie - International Edition, 2007, 46, 5515-5519.	7.2	94
14	Asymmetric synthesis of trans-dihydroarylfurans in a Friedel–Crafts/substitution domino reaction under squaramide catalysis. Chemical Communications, 2013, 49, 2001.	2.2	84
15	Metallic organophosphates as catalysts in asymmetric synthesis: a return journey. Organic and Biomolecular Chemistry, 2012, 10, 5001.	1.5	81
16	Pt(<scp>ii</scp>) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes. Chemical Communications, 2016, 52, 9137-9140.	2.2	79
17	Asymmetric Synthesis of 4â€Aminoâ€4 <i>H</i> â€Chromenes by Organocatalytic Oxaâ€Michael/Azaâ€Baylis–Hillman Tandem Reactions. Chemistry - A European Journal, 2010, 16, 9453-9456.	1.7	78
18	Organocatalytic asymmetric vinylogous addition to quinones – formation of optically active α-aryl ketones. Chemical Communications, 2008, , 632-634.	2.2	74

#	Article	IF	CITATIONS
19	Organocatalytic transformations of alkynals, alkynones, propriolates, and related electron-deficient alkynes. Tetrahedron, 2014, 70, 9145-9173.	1.0	72
20	Visible light photocatalysis – from racemic to asymmetric activation strategies. Chemical Communications, 2020, 56, 11169-11190.	2.2	71
21	Highly Enantioselective Construction of Tricyclic Derivatives by the Desymmetrization of Cyclohexadienones. Angewandte Chemie - International Edition, 2014, 53, 8184-8189.	7.2	68
22	Incorporation of photocatalytic Pt(II) complexes into imine-based layered covalent organic frameworks (COFs) through monomer truncation strategy. Applied Catalysis B: Environmental, 2020, 272, 119027.	10.8	64
23	Intramolecular Hydrogen Bond Activation: Thiourea-Organocatalyzed Enantioselective 1,3-Dipolar Cycloaddition of Salicylaldehyde-Derived Azomethine Ylides with Nitroalkenes. ACS Catalysis, 2018, 8, 1884-1890.	5.5	63
24	Facile Synthesis of Optically Pure 1,2-Diaryl (and 1-Alkyl-2-aryl) Ethyl and Propylamines. Organic Letters, 2003, 5, 677-680.	2.4	62
25	Novel clioquinol and its analogous platinum complexes: importance, role of the halogen substitution and the hydroxyl group of the ligand. Dalton Transactions, 2013, 42, 13343.	1.6	62
26	Asymmetric induction in photocatalysis – Discovering a new side to light-driven chemistry. Tetrahedron Letters, 2018, 59, 1286-1294.	0.7	62
27	Thiol–ene/oxidation tandem reaction under visible light photocatalysis: synthesis of alkyl sulfoxides. Chemical Communications, 2017, 53, 10463-10466.	2.2	60
28	Oneâ€Pot Synthesis of Pentasubstituted Cyclohexanes by a Michael Addition Followed by a Tandem Inter–Intra Double Henry Reaction. Chemistry - A European Journal, 2009, 15, 6576-6580.	1.7	59
29	Imineâ€Based Covalent Organic Frameworks as Photocatalysts for Metal Free Oxidation Processes under Visible Light Conditions. ChemCatChem, 2019, 11, 4916-4922.	1.8	59
30	Photoredox Heterobimetallic Dual Catalysis Using Engineered Covalent Organic Frameworks. ACS Catalysis, 2021, 11, 12344-12354.	5.5	59
31	π–π Stacking versus Steric Effects in Stereoselectivity Control: Highly Diastereoselective Synthesis ofsyn-1,2-Diarylpropylamines. Chemistry - A European Journal, 2007, 13, 6179-6195.	1.7	57
32	Asymmetric Synthesis of Rauhut–Currier type Products by a Regioselective Mukaiyama Reaction under Bifunctional Catalysis. Journal of the American Chemical Society, 2017, 139, 672-679.	6.6	57
33	Arylsulfonylacetylenes as Alkynylating Reagents of Cī£;H Bonds Activated with Lithium Bases. Angewandte Chemie - International Edition, 2012, 51, 2712-2716.	7.2	56
34	Asymmetric Synthesis of α-Alkyl α-Selenocarbonyl Compounds Catalyzed by Bifunctional Organocatalysts. Organic Letters, 2011, 13, 3052-3055.	2.4	54
35	Anionic–Anionic Asymmetric Tandem Reactions: Oneâ€Pot Synthesis of Optically Pure Fluorinated Indolines from 2â€ <i>p</i> â€Tolylsulfinyl Alkylbenzenes. Angewandte Chemie - International Edition, 2008, 47, 7941-7944.	7.2	53
36	Stereocontrolled Reactions Mediated by a Remote Sulfoxide Group:  Synthesis of Optically Pureanti-β-Amino Alcohols. Organic Letters, 2003, 5, 4513-4516.	2.4	51

#	Article	IF	CITATIONS
37	A New General Method for the Preparation ofN-Sulfonyloxaziridines. Organic Letters, 2005, 7, 5493-5496.	2.4	50
38	Control of the Dual Reactivity (Iminium-Dienamine) of β-Arylmethyl α,β-Unsaturated Aldehydes in Organocatalytic 1,3-Dipolar Cycloadditions with <i>N</i> -Benzoyl <i>C,N</i> -Cyclic Azomethine Imines. Journal of Organic Chemistry, 2014, 79, 10417-10433.	1.7	50
39	Oxidative CH Bond Functionalization and Ring Expansion with TMSCHN ₂ : A Copper(I) atalyzed Approach to Dibenzoxepines and Dibenzoazepines. Angewandte Chemie - International Edition, 2015, 54, 5049-5053.	7.2	50
40	Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions. Chemical Communications, 2017, 53, 7764-7767.	2.2	50
41	Asymmetric Aza-Henry Reactions fromN-p-Tolylsulfinylimines. Organic Letters, 2005, 7, 4407-4410.	2.4	49
42	α-Functionalization of Imines via Visible Light Photoredox Catalysis. Catalysts, 2020, 10, 562.	1.6	48
43	Monoalkylation of primary amines and N-sulfinylamides. Chemical Communications, 2009, , 404-406.	2.2	47
44	Visibleâ€Light Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie - International Edition, 2017, 56, 7826-7830.	7.2	47
45	Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 2020, 10, 720.	1.6	47
46	Enantioselective Synthesis of 4â€Isoxazolines by 1,3â€Dipolar Cycloadditions of Nitrones to Alkynals Catalyzed by Fluorodiphenylmethylpyrrolidines. Advanced Synthesis and Catalysis, 2012, 354, 1665-1671.	2.1	46
47	A Bifunctional Photoaminocatalyst for the Alkylation of Aldehydes: Design, Analysis, and Mechanistic Studies. ACS Catalysis, 2018, 8, 5928-5940.	5.5	46
48	Conjugated porous polymer based on BOPHY dyes as photocatalyst under visible light. Applied Catalysis B: Environmental, 2019, 258, 117933.	10.8	46
49	Asymmetric Synthesis of Cyclobutanes by a Formal [2+2] Cycloaddition Controlled by Dienamine Catalysis. Angewandte Chemie - International Edition, 2012, 51, 9734-9736.	7.2	44
50	Highly Stereoselective Benzylation ofN-Sulfinylketimines. Journal of the American Chemical Society, 2005, 127, 13048-13054.	6.6	43
51	The organocatalytic addition of bis(arylsulfonyl)methane to $\hat{I}\pm,\hat{I}^2$ -unsaturated aldehydes and the synthesis of optically-enriched 3-methyl-alkanols. Chemical Communications, 2009, , 4435.	2.2	43
52	Development and Application of Asymmetric Organocatalytic Mukaiyama and Vinylogous Mukaiyamaâ€Type Reactions. Chemistry - A European Journal, 2018, 24, 10906-10933.	1.7	43
53	Expanding the Scope of Arylsulfonylacetylenes as Alkynylating Reagents and Mechanistic Insights in the Formation of Csp ² Csp and Csp ³ Csp Bonds from Organolithiums. Chemistry - A European Journal, 2012, 18, 8414-8422.	1.7	42
54	Organocatalytic asymmetric "anti-Michael―reaction of β-ketoesters. Chemical Communications, 2007, , 3921.	2.2	41

#	Article	IF	CITATIONS
55	Synthesis of Chiral Cyclic Nitrones by Asymmetric Addition of βâ€Ketosulfones to Nitroalkenes followed by Reductive Cyclization. Chemistry - A European Journal, 2011, 17, 984-992.	1.7	41
56	Highly Stereoselective Vinylogous Pummerer Reaction Mediated by Me3SiX. Organic Letters, 2005, 7, 19-22.	2.4	39
57	Anticancer platinum complexes as non-innocent compounds for catalysis in aqueous media. Chemical Communications, 2010, 46, 454-456.	2.2	39
58	A New Strategy for the Synthesis of Optically Pure β-Fluoroalkyl β-Amino Acid Derivatives. Organic Letters, 2009, 11, 641-644.	2.4	38
59	Chromoselective access to Z- or E- allylated amines and heterocycles by a photocatalytic allylation reaction. Nature Communications, 2019, 10, 2634.	5.8	38
60	Asymmetric Synthesis of α-Trifluoromethylthio-β-Amino Acids under Phase Transfer Catalysis. Organic Letters, 2020, 22, 219-223.	2.4	38
61	Sulfonyl Acetylenes as Alkynylating Reagents Under Radical or Anionic Conditions. European Journal of Organic Chemistry, 2014, 2014, 1577-1588.	1.2	35
62	Intramolecular Homolytic Substitution Enabled by Photoredox Catalysis: Sulfur, Phosphorus, and Silicon Heterocycle Synthesis from Aryl Halides. Organic Letters, 2019, 21, 5295-5300.	2.4	34
63	Enantioselective Aminocatalytic [2 + 2] Cycloaddition through Visible Light Excitation. ACS Catalysis, 2020, 10, 5335-5346.	5.5	34
64	Novel Oxidative Ugi Reaction for the Synthesis of Highly Active, Visibleâ€Light, Imideâ€Acridinium Organophotocatalysts. Chemistry - A European Journal, 2018, 24, 12509-12514.	1.7	33
65	Synthesis of 3â€Benzazepines by Metalâ€Free Oxidative C–H Bond Functionalization–Ring Expansion Tandem Reaction. Advanced Synthesis and Catalysis, 2016, 358, 4049-4056.	2.1	32
66	Configurational Control of Benzyl Carbanion–Copper Complexes by Sulfinyl Groups: Synthesis of Optically Pure Allenes with Central and Axial Chirality. Angewandte Chemie - International Edition, 2008, 47, 6836-6839.	7.2	30
67	2â€Hydroxybenzophenone as a Chemical Auxiliary for the Activation of Ketiminoesters for Highly Enantioselective Addition to Nitroalkenes under Bifunctional Catalysis. Angewandte Chemie - International Edition, 2018, 57, 5350-5354.	7.2	30
68	Unlocking the direct photocatalytic difluoromethylation of Cî€N bonds. Chemical Communications, 2020, 56, 3769-3772.	2.2	30
69	[8+2] Formal Cycloaddition Reactions of Tropones with Azlactones under BrÃ,nsted Acid Catalysis and Synthesis of αâ€(2â€Tropyl), αâ€Alkyl αâ€Amino Acids. European Journal of Organic Chemistry, 2014, 2014, 13	39 5 -1400.	29
70	Organocatalytic Strategies for the Development of the Enantioselective Inverseâ€electronâ€demand Heteroâ€Dielsâ€Alder Reaction. Chemistry - A European Journal, 2021, 27, 12509-12520.	1.7	29
71	Preparation of α-amino ketones, β-amino hydroxylamines using asymmetric aza-Henry reactions of N-p-tolylsulfinylimines with nitroethane. Tetrahedron, 2006, 62, 12197-12203.	1.0	28
72	In vitro and in vivo anticancer effects of two quinoline–platinum(II) complexes on human osteosarcoma models. Cancer Chemotherapy and Pharmacology, 2019, 83, 681-692.	1.1	28

#	Article	IF	CITATIONS
73	Recent Visible Light and Metal Free Strategies in [2+2] and [4+2] Photocycloadditions. European Journal of Organic Chemistry, 2021, 2021, 3303-3321.	1.2	28
74	Gold(III) complexes with hydroxyquinoline, aminoquinoline and quinoline ligands: Synthesis, cytotoxicity, DNA and protein binding studies. Journal of Inorganic Biochemistry, 2015, 153, 339-345.	1.5	27
75	Asymmetric vinylogous Mukaiyama aldol reaction of isatins under bifunctional organocatalysis: enantioselective synthesis of substituted 3-hydroxy-2-oxindoles. Chemical Communications, 2018, 54, 2781-2784.	2.2	27
76	Synthesis of 4-Hydroxy-4H-chromenes by Reaction of Salicylic Aldehydes with Alkynals Catalyzed by Silyl Prolinol Ethers. Synthesis, 2011, 2011, 1840-1846.	1.2	26
77	8-Mercaptoquinoline as a Ligand for Enhancing the Photocatalytic Activity of Pt(II) Coordination Complexes: Reactions and Mechanistic Insights. Journal of Organic Chemistry, 2019, 84, 6437-6447.	1.7	26
78	Asymmetric Synthesis of 1,2-Diamines bearing Tetrasubstituted Centers from Nonstabilized Azomethine Ylides and <i>N</i> -Sulfinylketimines under BrĄ̃,nsted Acid Catalysis. Organic Letters, 2016, 18, 92-95.	2.4	25
79	Stereoselective Addition of α-Sulfinyl Carbanions toN-p-tolylsulfinylketimines: Synthesis of Optically Pure 1,2,2â€ [~] -Trialkyl-2-aminoethanols. Journal of Organic Chemistry, 2004, 69, 4454-4463.	1.7	24
80	Novel N-sulfonamide trans-platinum complexes: synthesis, reactivity and in vitro evaluation. MedChemComm, 2011, 2, 789.	3.5	23
81	A General Asymmetric Formal Synthesis of Azaâ€Baylis–Hillman Type Products under Bifunctional Catalysis. Chemistry - A European Journal, 2018, 24, 3117-3121.	1.7	23
82	New reactions of anticancer-platinum complexes and their intriguing behaviour under various experimental conditions. Dalton Transactions, 2010, 39, 10601.	1.6	22
83	Highly Stereoselective Synthesis of Tertiary Propargylic Centers and Their Isomerization to Enantiomerically Enriched Allenes. Chemistry - A European Journal, 2012, 18, 9775-9779.	1.7	22
84	Evaluation of novel trans-sulfonamide platinum complexes against tumor cell lines. European Journal of Medicinal Chemistry, 2014, 76, 360-368.	2.6	22
85	Dienamine and Friedel–Crafts Oneâ€Pot Synthesis, and Antitumor Evaluation of Diheteroarylalkanals. Chemistry - A European Journal, 2015, 21, 8237-8241.	1.7	22
86	Visible light photocatalytic asymmetric synthesis of pyrrolo[1,2- <i>a</i>]indoles <i>via</i> intermolecular [3+2] cycloaddition. Chemical Communications, 2019, 55, 11303-11306.	2.2	22
87	Oxidative Addition of Pd(0) to Arâ^'SO2R Bonds:  Heck-Type Reactions of Sulfones. Organic Letters, 2006, 8, 2683-2686.	2.4	20
88	Multifunctional carbon nanotubes covalently coated with imine-based covalent organic frameworks: exploring structure–property relationships through nanomechanics. Nanoscale, 2020, 12, 1128-1137.	2.8	20
89	Fluorinated Sulfinates as Source of Alkyl Radicals in the Photoâ€Enantiocontrolled βâ€Functionalization of Enals. Angewandte Chemie - International Edition, 2022, 61, e202112632.	7.2	20
90	Synthesis of chiral ortho-(p-tolylsulfinyl) benzyl ketones. Tetrahedron, 2004, 60, 10067-10075.	1.0	19

#	Article	IF	CITATIONS
91	Influence of the Reaction Conditions on the Evolution of the Michael Addition of βâ€Keto Sulfones to α,βâ€Unsaturated Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 4482-4491.	1.2	19
92	Synthesis of Unfunctionalized Carbonated Fragments Containing Two Vicinal Chiral Centers: Stereocontrolled Benzylation of Vinylsulfones Mediated by a Remote Sulfinyl Group. Chemistry - A European Journal, 2010, 16, 8968-8971.	1.7	19
93	Modular Threeâ€Component Organocatalytic Synthesis of 3,4â€Disubstituted Pyrroles by a Oneâ€Pot Domino Reaction. ChemCatChem, 2012, 4, 976-979.	1.8	19
94	A straightforward alkynylation of Li and Mg metalated heterocycles with sulfonylacetylenes. Chemical Communications, 2015, 51, 346-349.	2.2	19
95	Enantioselective Conjugate Azidation of <i>α,β</i> â€Unsaturated Ketones under Bifunctional Organocatalysis by Direct Activation of TMSN ₃ . Advanced Synthesis and Catalysis, 2019, 361, 4790-4796.	2.1	19
96	Enhancing Visible-Light Photocatalysis <i>via</i> Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Interfaces, 2021, 13, 24877-24886.	4.0	19
97	A Novel Asymmetric Vinylogous Tin-Pummerer Rearrangement. Organic Letters, 2004, 6, 1757-1760.	2.4	18
98	Tandem Cyclization–Michael Reaction by Combination of Metal- and Organocatalysis. Journal of Organic Chemistry, 2011, 76, 7287-7293.	1.7	18
99	Expanding the synthesis of new trans-sulfonamide platinum complexes: Cytotoxicity, SAR, fluorescent cell assays and stability studies. Journal of Inorganic Biochemistry, 2013, 127, 128-140.	1.5	17
100	Metal-free visible light-promoted synthesis of isothiazoles: a catalytic approach for N–S bond formation from iminyl radicals under batch and flow conditions. Green Chemistry, 2020, 22, 6792-6797.	4.6	17
101	Organocatalytic <i>vs.</i> Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 6446-6456.	1.6	17
102	Enantioselective Inverse-Electron Demand Aza-Diels–Alder Reaction: ipso,α-Selectivity of Silyl Dienol Ethers. ACS Catalysis, 2021, 11, 12133-12145.	5.5	17
103	Asymmetric synthesis of cyclic β-amino carbonyl derivatives by a formal [3 + 2] photocycloaddition. Chemical Communications, 2022, 58, 1334-1337.	2.2	17
104	Asymmetric synthesis of quaternary α-amino acid derivatives and their fluorinated analogues. Amino Acids, 2011, 41, 559-573.	1.2	16
105	Synthesis of Alkyl‥nolâ€Ethers by "Antiâ€Michael Addition―of Metal Alkoxides to βâ€&ubstituted Alkynylsulfones. European Journal of Organic Chemistry, 2013, 2013, 4405-4409.	1.2	16
106	Effect of electronic and steric properties of 8-substituted quinolines in gold(III) complexes: Synthesis, electrochemistry, stability, interactions and antiproliferative studies. Journal of Inorganic Biochemistry, 2017, 174, 111-118.	1.5	16
107	Size-selective mesoporous silica-based Pt(II) complex as efficient and reusable photocatalytic material. Journal of Catalysis, 2019, 373, 374-383	3.1	16
108	BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions. Chemical Science, 2019, 10, 4346-4351.	3.7	16

#	Article	IF	CITATIONS
109	Tuning the Activity–Stability Balance of Photocatalytic Organic Materials for Oxidative Coupling Reactions. ACS Applied Materials & Interfaces, 2022, 14, 16258-16268.	4.0	16
110	Complete Regio―and Stereoselectivity Control in the Halohydroxylation of Nonâ€activated Allenes Mediated by a Remote Sulfinyl Group. Angewandte Chemie - International Edition, 2009, 48, 3155-3157.	7.2	15
111	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie - International Edition, 2021, 60, 4555-4560.	7.2	15
112	Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers. Chemical Communications, 2021, 57, 3046-3049.	2.2	14
113	General electrochemical Minisci alkylation of <i>N</i> -heteroarenes with alkyl halides. Chemical Science, 2022, 13, 6512-6518.	3.7	14
114	Inter- and Intramolecular Dienamine Organocatalytic Strategies for the Synthesis of Tetrahydroisoquinolines and Tricyclic Derivatives via [3+2] and [4+2] Cycloadditions. Synlett, 2015, 26, 1940-1954.	1.0	13
115	Asymmetric [2,3]-Wittig Rearrangement: Synthesis of Homoallylic, Allenylic, and Enynyl α-Benzyl Alcohols. Organic Letters, 2018, 20, 8047-8051.	2.4	13
116	Squaramideâ€IRMOFâ€16 Analogue for Catalysis of Solventâ€Free, Epoxide Ringâ€Opening Tandem and Multicomponent Reactions. ChemCatChem, 2018, 10, 3995-3998.	1.8	13
117	Visible Light Photocatalytic Synthesis of Tetrahydroquinolines Under Batch and Flow Conditions. European Journal of Organic Chemistry, 2020, 2020, 5995-5999.	1.2	13
118	Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants. Journal of Materials Science and Technology, 2022, 103, 134-143.	5.6	13
119	Complete Stereocontrol in Organocatalytic Additions of βâ€Ketosulfoxides to Conjugated Aldehydes. Chemistry - A European Journal, 2011, 17, 4030-4037.	1.7	12
120	Mechanistic added value of a trans-Sulfonamide-Platinum-Complex in human melanoma cell lines and synergism with cis-Platin. Molecular Cancer, 2017, 16, 45.	7.9	12
121	2â€Hydroxybenzophenone as a Chemical Auxiliary for the Activation of Ketiminoesters for Highly Enantioselective Addition to Nitroalkenes under Bifunctional Catalysis. Angewandte Chemie, 2018, 130, 5448-5452.	1.6	12
122	Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. Nano Research, 2021, 14, 458-465.	5.8	12
123	Asymmetric Intramolecular Pauson–Khand Reaction Mediated by a Remote Sulfenyl or Sulfinyl Group. Journal of Organic Chemistry, 2012, 77, 6583-6599.	1.7	11
124	Intramolecular hydrogen-bond activation for the addition of nucleophilic imines: 2-hydroxybenzophenone as a chemical auxiliary. Chemical Communications, 2018, 54, 3399-3402.	2.2	11
125	Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Communications Chemistry, 2020, 3, .	2.0	11
126	Intramolecular Hydrogen-Bond Activation: Strategies, Benefits, and Influence in Catalysis. ACS Organic & Inorganic Au, 2022, 2, 197-204.	1.9	11

#	Article	IF	CITATIONS
127	Predesigned Covalent Organic Frameworks as Effective Platforms for Pd(II) Coordination Enabling Crossâ€Coupling Reactions under Sustainable Conditions. Advanced Sustainable Systems, 2022, 6, .	2.7	11
128	Asymmetric Synthesis of Secondary and Tertiary Propargylic Alcohols by Umpolung of Acetylenic Sulfones and <i>ortho</i> -Sulfinyl Carbanions. Journal of Organic Chemistry, 2018, 83, 1940-1947.	1.7	10
129	Switching acidic and basic catalysis through supramolecular functionalization in a porous 3D covalent imine-based material. Catalysis Science and Technology, 2019, 9, 6007-6014.	2.1	10
130	Intramolecular Hydrogen Bond Activation of Azaâ€Methylene Imines in Hydrogen Bond Bifunctional Catalysis – A Density Functional Theory Study. European Journal of Organic Chemistry, 2019, 2019, 574-581.	1.2	10
131	Asymmetric trifluoromethylthiolation of azlactones under chiral phase transfer catalysis. Organic and Biomolecular Chemistry, 2020, 18, 2914-2920.	1.5	10
132	Photocatalytic Oxidation Reactions Mediated by Covalent Organic Frameworks and Related Extended Organic Materials. Frontiers in Chemistry, 2021, 9, 708312.	1.8	10
133	Synthesis of Enantiomerically Pure Allenes with Central and Axial Chirality Mediated by a Remote Sulfinyl Group. Synthesis, 2009, 2009, 3339-3349.	1.2	9
134	Synthesis and Stereoselective Halogenolysis of Optically Pure Benzylstannanes. Journal of Organic Chemistry, 2009, 74, 2145-2152.	1.7	9
135	Oneâ€Pot Asymmetric Synthesis of Cyclopropanes with Quaternary Centers Starting From Bromonitroalkenes under Aminocatalytic Conditions. ChemPlusChem, 2015, 80, 1595-1600.	1.3	9
136	Weakly bounded intermediates as a previous step towards highly-enantioselective iminium type additions of β-keto-sulfoxides and -sulfones. Journal of Molecular Catalysis A, 2016, 423, 308-318.	4.8	9
137	Asymmetric synthesis of Rauhut–Currier-type esters <i>via</i> Mukaiyama–Michael reaction to acylphosphonates under bifunctional catalysis. Chemical Communications, 2018, 54, 13941-13944.	2.2	9
138	The role of catalyst–support interactions in oxygen evolution anodes based on Co(OH) ₂ nanoparticles and carbon microfibers. Catalysis Science and Technology, 2020, 10, 4513-4521.	2.1	9
139	New Methods in Organic Synthesis Through Copper-Catalyzed Borylation Reactions: Stereoselective Synthesis of 1,4-Diols and Vinylboronates. Synlett, 2013, 24, 804-812.	1.0	8
140	Visibleâ€Light Photocatalytic Intramolecular Cyclopropane Ring Expansion. Angewandte Chemie, 2017, 129, 7934-7938.	1.6	8
141	"Anti-Michael addition―of Grignard reagents to sulfonylacetylenes: synthesis of alkynes. Organic and Biomolecular Chemistry, 2017, 15, 3901-3908.	1.5	8
142	Mesityl or Imide Acridinium Photocatalysts: Accessible Versus Inaccessible Chargeâ€Transfer States in Photoredox Catalysis. ChemPhotoChem, 2019, 3, 609-612.	1.5	8
143	Boron Dipyrromethene (BODIPY) as Electronâ€Withdrawing Group in Asymmetric Copperâ€Catalyzed [3+2] Cycloadditions for the Synthesis of Pyrrolidineâ€Based Biological Sensors. Advanced Synthesis and Catalysis, 2020, 362, 1345-1355.	2.1	8
144	Enantioselective Addition of Remote Alkyl Radicals to Double Bonds by Photocatalytic Proton-Coupled Electron Transfer (PCET) Deconstruction of Unstrained Cycloalkanols. Organic Letters, 2022, 24, 3123-3127.	2.4	8

#	Article	IF	CITATIONS
145	Asymmetric Transformations Mediated by Sulfinyl Groups. , 0, , 55-159.		7
146	Synthesis of Enantiopure 1,5â€Enynes and 1,5â€Diynes with Propargylic Quaternary Centers. European Journal of Organic Chemistry, 2015, 2015, 3314-3319.	1.2	7
147	Mono―and Bimetallic Alkynyl Metallocenes and Half‧andwich Complexes: A Simple and Versatile Synthetic Approach. Chemistry - A European Journal, 2016, 22, 15645-15649.	1.7	7
148	Enantioselective Organocatalyzed <i>aza</i> â€Michael Addition Reaction of 2â€Hydroxybenzophenone Imines to Nitroolefins under Batch and Flow Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3845-3851.	2.1	7
149	Bioinspired Electroâ€Organocatalytic Material Efficient for Hydrogen Production. Chemistry - A European Journal, 2018, 24, 3305-3313.	1.7	6
150	Photocatalytic Water-Soluble Cationic Platinum(II) Complexes Bearing Quinolinate and Phosphine Ligands. Inorganic Chemistry, 2020, 59, 13845-13857.	1.9	6
151	Biodegradable base stock oils obtained from ricinoleic acid using C8 alcohols and process integration into a biodiesel industry. Biomass Conversion and Biorefinery, 2021, 11, 803-814.	2.9	6
152	Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Advanced Synthesis and Catalysis, 2022, 364, 1689-1694.	2.1	6
153	Highly Stereoselective Vinylogous Pummerer Rearrangement. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1497-1498.	0.8	5
154	Onâ€Surface Driven Formal Michael Addition Produces m â€Polyaniline Oligomers on Pt(111). Angewandte Chemie - International Edition, 2020, 59, 23220-23227.	7.2	5
155	Stereocontrolled Addition of Scrambling <i>ortho</i> -Sulfinyl Carbanions: Easy Access to Homopropargylamines and α-Allenylamines. Organic Letters, 2020, 22, 2431-2436.	2.4	5
156	Enantioselective vinylogous-Mukaiyama-type dearomatisation by anion-binding catalysis. Chemical Communications, 2021, 57, 9244-9247.	2.2	5
157	Oxidized multiwalled nanotubes as efficient carbocatalyst for the general synthesis of azines. Journal of Catalysis, 2022, 406, 174-183.	3.1	5
158	1,4-Michael additions of cyclic- \hat{l}^2 -ketoesters catalyzed by DNA in aqueous media. Catalysis Communications, 2014, 44, 10-14.	1.6	4
159	Stereodivergent Aminocatalytic Synthesis of <i>Z</i> ―and <i>E</i> â€Trisubstituted Double Bonds from Alkynals. Chemistry - A European Journal, 2016, 22, 16467-16477.	1.7	4
160	Continuous-flow synthesis of alkyl zinc sulfinates for the direct photofunctionalization of heterocycles. Chemical Communications, 2022, 58, 4611-4614.	2.2	4
161	Isothiourea-catalysed enantioselective radical conjugate addition under batch and flow conditions. Chemical Communications, 2022, 58, 7277-7280.	2.2	4
162	Luminescent cis-Bis(bipyridyl)ruthenium(II) Complexes with 1,2-Azolylamidino Ligands: Photophysical, Electrochemical Studies, and Photocatalytic Oxidation of Thioethers. Inorganic Chemistry, 2021, 60, 7008-7022.	1.9	3

#	Article	IF	CITATIONS
163	Approaches to the stereocontolled synthesis of anthracyclinones: Preparation of optically pure bicyclic intermediates for the regioselective construction of the tetracyclic skeleton. Arkivoc, 2005, 2005, 253-265.	0.3	3
164	Rutheniumâ€ <i>pâ€</i> cymene Complex Sideâ€Wall Covalently Bonded to Carbon Nanotubes as Efficient Hybrid Transfer Hydrogenation Catalyst. ChemCatChem, 2021, 13, 5156-5165.	1.8	3
165	Simple Rules for Complex Near-Glass-Transition Phenomena in Medium-Sized Schiff Bases. International Journal of Molecular Sciences, 2022, 23, 5185.	1.8	3
166	Highly Stereoselective Reactions of γ-Sulfinyl Carbanions with Achiral Imines. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1209-1215.	0.8	2
167	Cover Picture: Organocatalytic Highly Enantioselective α-Arylation of β-Ketoesters / Asymmetric Organocatalytic α-Arylation of Aldehydes (Angew. Chem. Int. Ed. 29/2007). Angewandte Chemie - International Edition, 2007, 46, 5449-5449.	7.2	2
168	The role of the sulfinyl group in the copper catalyzed benzyl reactions from 2- <i>p</i> -tolylsulfinylbenzylstannanes. Journal of Sulfur Chemistry, 2009, 30, 370-376.	1.0	2
169	Arylsulfonylacetylenes as Alkynylating Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 403-407.	0.8	2
170	A General Asymmetric Formal Synthesis of Aza-Baylis-Hillman Type Products under Bifunctional Catalysis. Chemistry - A European Journal, 2018, 24, 3072-3072.	1.7	2
171	Role of intramolecular hydrogen bonds and electron withdrawing groups in the acidity of aldimines and ketimines: a density functional theory study. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	2
172	Visible-Light Radical–Radical Coupling vs. Radical Addition: Disentangling a Mechanistic Knot. Catalysts, 2021, 11, 922.	1.6	2
173	Enantioselective vinylogous Mukaiyama aldol reaction of α-ketoesters under bifunctional organocatalysis. Chemical Communications, 2021, 57, 11665-11668.	2.2	2
174	Glass-forming Schiff bases: Peculiar self-organizing systems with bifurcated hydrogen bonds. Journal of Molecular Liquids, 2021, , 118052.	2.3	2
175	Single walled carbon nanotubes with encapsulated Pt(II) photocatalyst for the oxidation of sulfides in water. Journal of Catalysis, 2022, 413, 274-283.	3.1	2
176	Nucleophilic halo-Michael addition under Lewis-base activation. Chemical Communications, 2019, 55, 12936-12939.	2.2	1
177	Onâ€Surface Driven Formal Michael Addition Produces m â€Polyaniline Oligomers on Pt(111). Angewandte Chemie, 2020, 132, 23420-23427.	1.6	1
178	Solvent-Free Visible Light Photocatalytic Oxidation Processes Mediated by Transparent Films of an Imine-Based Organic Polymer. Catalysts, 2021, 11, 1426.	1.6	1
179	Fluorinated Sulfinates as Source of Alkyl Radicals in the Photoâ€Enantiocontrolled βâ€Functionalization of Enals. Angewandte Chemie, 0, , e202112632.	1.6	1
180	Facile Synthesis of Optically Pure 1,2-Diaryl (and 1-Alkyl-2-aryl) Ethyl and Propylamines ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
181	Stereocontrolled Reactions Mediated by a Remote Sulfoxide Group: Synthesis of Optically Pure anti-β-Amino Alcohols ChemInform, 2004, 35, no.	0.1	0
182	A Novel Asymmetric Vinylogous Tin-Pummerer Rearrangement ChemInform, 2004, 35, no.	0.1	0
183	Highly Stereoselective Vinylogous Pummerer Reaction Mediated by Me3SiX ChemInform, 2005, 36, no.	0.1	0
184	A General Method for the Preparation of N-Sulfonyl Aldimines and Ketimines ChemInform, 2005, 36, no.	0.1	0
185	Highly Stereoselective Reactions of γ-Sulfinyl Carbanions with Achiral Imines. ChemInform, 2005, 36, no.	0.1	0
186	Highly Stereoselective Vinylogous Pummerer Rearrangement. ChemInform, 2005, 36, no.	0.1	0
187	Highly Stereoselective Benzylation of N-Sulfinylketimines ChemInform, 2006, 37, no.	0.1	0
188	Asymmetric Aza-Henry Reactions from N-p-Tolylsulfinylimines ChemInform, 2006, 37, no.	0.1	0
189	Stereodivergent Aminocatalytic Synthesis of Z - and E -Trisubstituted Double Bonds from Alkynals. Chemistry - A European Journal, 2016, 22, 16329-16329.	1.7	0
190	Frontispiece: Development and Application of Asymmetric Organocatalytic Mukaiyama and Vinylogous Mukaiyama-Type Reactions. Chemistry - A European Journal, 2018, 24, .	1.7	0
191	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie, 2021, 133, 4605-4610.	1.6	0
192	Frontispiece: Organocatalytic Strategies for the Development of the Enantioselective Inverseâ€electronâ€demand Heteroâ€Dielsâ€Alder Reaction. Chemistry - A European Journal, 2021, 27, .	1.7	0