
Sami Ullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6775895/publications.pdf Version: 2024-02-01

SAMILLIAH

#	Article	IF	CITATIONS
1	Restoration impacts on rates of denitrification and greenhouse gas fluxes from tropical coastal wetlands. Science of the Total Environment, 2022, 803, 149577.	3.9	7
2	The Time Machine framework: monitoring and prediction of biodiversity loss. Trends in Ecology and Evolution, 2022, 37, 138-146.	4.2	13
3	Concurrent measurement of nitrate and ammonium in water and soil samples using ionâ€selective electrodes: Tackling sensitivity and precision issues. Analytical Science Advances, 2021, 2, 279-288.	1.2	3
4	Heavy metal pollution increases CH4 and decreases CO2 emissions due to soil microbial changes in a mangrove wetland: Microcosm experiment and field examination. Chemosphere, 2021, 269, 128735.	4.2	47
5	Chronic Atmospheric Reactive Nitrogen Deposition Suppresses Biological Nitrogen Fixation in Peatlands. Environmental Science & amp; Technology, 2021, 55, 1310-1318.	4.6	9
6	<scp>BIFoR FACE</scp> : Water–soil–vegetation–atmosphere data from a temperate deciduous forest catchment, including under elevated <scp>CO₂</scp> . Hydrological Processes, 2021, 35, e14096.	1.1	8
7	Spatial and temporal dynamics of nitrogen exchange in an upwelling reach of a groundwaterâ€fed river and potential response to perturbations changing rainfall patterns under <scp>UK</scp> climate change scenarios. Hydrological Processes, 2021, 35, e14135.	1.1	3
8	Increasing nutrient inputs risk a surge of nitrous oxide emissions from global mangrove ecosystems. One Earth, 2021, 4, 742-748.	3.6	6
9	Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants, 2021, 7, 864-876.	4.7	150
10	Chronic atmospheric reactive N deposition has breached the N sink capacity of a northern ombrotrophic peatbog increasing the gaseous and fluvial N losses. Science of the Total Environment, 2021, 787, 147552.	3.9	1
11	Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. Journal of Cleaner Production, 2021, 315, 128036.	4.6	71
12	The method controls the story - Sampling method impacts on the detection of pore-water nitrogen concentrations in streambeds. Science of the Total Environment, 2020, 709, 136075.	3.9	2
13	Alleviation of nitrogen stress in rice (<i>Oryza sativa</i>) by ceria nanoparticles. Environmental Science: Nano, 2020, 7, 2930-2940.	2.2	48
14	Seasonal variability of sediment controls of nitrogen cycling in an agricultural stream. Biogeochemistry, 2020, 148, 31-48.	1.7	16
15	Seasonal variability of sediment controls of carbon cycling in an agricultural stream. Science of the Total Environment, 2019, 688, 732-741.	3.9	18
16	Streambed Organic Matter Controls on Carbon Dioxide and Methane Emissions from Streams. Environmental Science & Technology, 2019, 53, 2364-2374.	4.6	48
17	China's ineffective plastic solution to haze. Science, 2019, 364, 1145-1145.	6.0	15
18	Revealing chlorinated ethene transformation hotspots in a nitrate-impacted hyporheic zone. Water Research, 2019, 161, 222-231.	5.3	15

Sami Ullah

#	Article	IF	CITATIONS
19	Reply to â€~Pseudoreplication and greenhouse-gas emissions from rivers'. Nature Communications, 2019, 10, 5369.	5.8	0
20	Biological nitrogen fixation in peatlands: Comparison between acetylene reduction assay and 15N2 assimilation methods. Soil Biology and Biochemistry, 2019, 131, 157-165.	4.2	36
21	Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 2018, 9, 1135.	5.8	98
22	Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. Water Research, 2018, 128, 362-382.	5.3	90
23	Simultaneous Detection of Ammonium and Nitrate in Environmental Samples Using on Ion-Selective Electrode and Comparison with Portable Colorimetric Assays. Sensors, 2018, 18, 3555.	2.1	36
24	Thermal sensitivity of CO2 and CH4 emissions varies with streambed sediment properties. Nature Communications, 2018, 9, 2803.	5.8	45
25	Soil Greenhouse Gas Fluxes, Environmental Controls, and the Partitioning of N ₂ O Sources in UK Natural and Seminatural Land Use Types. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2617-2633.	1.3	20
26	Application of the ¹⁵ N gas-flux method for measuring in situ N ₂ and N ₂ O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique. Biogeosciences, 2016, 13, 1821-1835.	1.3	35
27	Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems. Science of the Total Environment, 2015, 511, 381-392.	3.9	16
28	Relative Magnitude and Controls of in Situ N ₂ and N ₂ O Fluxes due to Denitrification in Natural and Seminatural Terrestrial Ecosystems Using ¹⁵ N Tracers. Environmental Science & Technology, 2015, 49, 14110-14119.	4.6	32
29	Interpreting spatial patterns in redox and coupled water–nitrogen fluxes in the streambed of a gaining river reach. Biogeochemistry, 2014, 117, 491-509.	1.7	22
30	Denitrification potential of organic, forest and grassland soils in the Ribble-Wyre and Conwy River catchments, UK. Environmental Sciences: Processes and Impacts, 2014, 16, 1551-1562.	1.7	14
31	Fine-Scale in Situ Measurement of Riverbed Nitrate Production and Consumption in an Armored Permeable Riverbed. Environmental Science & amp; Technology, 2014, 48, 4425-4434.	4.6	23
32	Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter: the role of flooding, oxygen concentration, and temperature. Biogeochemistry, 2014, 118, 35-48.	1.7	32
33	Influence of emergent vegetation on nitrate cycling in sediments of a groundwater-fed river. Biogeochemistry, 2014, 118, 121-134.	1.7	20
34	Revealing the spatial variability of water fluxes at the groundwaterâ€surface water interface. Water Resources Research, 2013, 49, 3978-3992.	1.7	63
35	In situ measurement of redox sensitive solutes at high spatial resolution in a riverbed using Diffusive Equilibrium in Thin Films (DET). Ecological Engineering, 2012, 49, 18-26.	1.6	15
36	Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada. Journal of Geophysical Research, 2011, 116, .	3.3	73

Sami Ullah

#	Article	IF	CITATIONS
37	Carbon dioxide, methane, and nitrous oxide exchanges in an ageâ€sequence of temperate pine forests. Global Change Biology, 2010, 16, 2198-2212.	4.2	85
38	Nitrous Oxide Consumption Potentials of Well-drained Forest Soils in Southern Québec, Canada. Geomicrobiology Journal, 2010, 27, 53-60.	1.0	22
39	Greenhouse gas fluxes from boreal forest soils during the snow-free period in Quebec, Canada. Canadian Journal of Forest Research, 2009, 39, 666-680.	0.8	47
40	Soil drainage and vegetation controls of nitrogen transformation rates in forest soils, southern Quebec. Journal of Geophysical Research, 2009, 114, .	3.3	20
41	Use of cotton gin trash to enhance denitrification in restored forested wetlands. Forest Ecology and Management, 2006, 237, 557-563.	1.4	17
42	Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley. Ecological Engineering, 2006, 28, 131-140.	1.6	63
43	Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff. Biogeochemistry, 2006, 81, 253-267.	1.7	43
44	Denitrification and N2O emission from forested and cultivated alluvial clay soil. Biogeochemistry, 2005, 73, 499-513.	1.7	35