
Michael R W Dawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6775100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The how and why of what went where in apparent motion: Modeling solutions to the motion correspondence problem Psychological Review, 1991, 98, 569-603.	2.7	163
2	Density Plots of Hidden Value Unit Activations Reveal Interpretable Bands. Connection Science, 1995, 7, 167-187.	1.8	100
3	Modifying the Generalized Delta Rule to Train Networks of Non-monotonic Processors for Pattern Classification. Connection Science, 1992, 4, 19-31.	1.8	73
4	Polarity matching in the Ternus configuration. Vision Research, 1994, 34, 3347-3359.	0.7	70
5	Fitting the ex-Gaussian equation to reaction time distributions. Behavior Research Methods, 1988, 20, 54-57.	1.3	56
6	Apparent motion and element connectedness. Spatial Vision, 1989, 4, 241-251.	1.4	52
7	The consistency of element transformations affects the visibility but not the direction of illusory motion. Spatial Vision, 1989, 4, 17-29.	1.4	51
8	To what extent do beliefs affect apparent motion?. Philosophical Psychology, 1994, 7, 471-491.	0.5	47
9	Spatio-temporal parameters and the three-dimensionality of apparent motion: Evidence for two types of processing. Spatial Vision, 1987, 2, 263-272.	1.4	44
10	Moving contexts do affect the perceived direction of apparent motion in motion competition displays. Vision Research, 1987, 27, 799-809.	0.7	42
11	Effects of adapting luminance and stimulus contrast on the temporal and spatial limits of short-range motion. Vision Research, 1990, 30, 415-429.	0.7	38
12	Autonomous processing in parallel distributed processing networks. Philosophical Psychology, 1992, 5, 199-219.	0.5	37
13	Temporal Frequency and Velocity-Like Tuning in the Pigeon Accessory Optic System. Journal of Neurophysiology, 2003, 90, 1829-1841.	0.9	37
14	Using perceptrons to explore the reorientation task. Cognition, 2010, 114, 207-226.	1.1	29
15	PDP networks can provide models that are not mere implementations of classical theories. Philosophical Psychology, 1997, 10, 25-40.	0.5	27
16	Artificial neural networks that use single-photon emission tomography to identify patients with probable Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 1994, 21, 1303-1311.	2.2	24
17	Classification and Staging of Dementia of the Alzheimer Type. Archives of Neurology, 1997, 54, 1001.	4.9	23
18	Using an artificial neural network to classify black-capped chickadee (Poecile atricapillus) call note types. Journal of the Acoustical Society of America, 2006, 119, 3161-3172.	0.5	23

#	Article	IF	CITATIONS
19	Simultaneity in the Ternus configuration: psychophysical data and a computer model. Vision Research, 1994, 34, 397-407.	0.7	20
20	Artificial neural network discrimination of black-capped chickadee (Poecile atricapillus) call notes. Journal of the Acoustical Society of America, 2006, 120, 1111-1117.	0.5	20
21	Mechanisms of call note-type perception in black-capped chickadees (Poecile atricapillus): Peak shift in a note-type continuum Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 109-115.	0.3	18
22	A parallel distributed processing model of Wason's selection task. Cognitive Systems Research, 2001, 2, 207-231.	1.9	17
23	Simple Artificial Neural Networks That Match Probability and Exploit and Explore When Confronting a Multiarmed Bandit. IEEE Transactions on Neural Networks, 2009, 20, 1368-1371.	4.8	16
24	Black-capped (<i>Poecile atricapillus</i>) and mountain chickadee (<i>Poecile gambeli</i>) contact call contains species, sex, and individual identity features. Journal of the Acoustical Society of America, 2010, 127, 1116-1123.	0.5	16
25	On the Subsymbolic Nature of a PDP Architecture that Uses a Nonmonotonic Activation Function. Minds and Machines, 2001, 11, 197-218.	2.7	15
26	Statistical classification of black-capped (Poecile atricapillus) and mountain chickadee (Poecile) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 46
27	Using Extra Output Learning to Insert a Symbolic Theory into a Connectionist Network. Minds and Machines, 2000, 10, 171-201.	2.7	14
28	Artificial Neural Networks that Classify Musical Chords. International Journal of Cognitive Informatics and Natural Intelligence, 2008, 2, 22-30.	0.4	13
29	Training redundant artificial neural networks: Imposing biology on technology. Psychological Research, 1994, 57, 54-62.	1.0	12
30	Connectionism and Classical Conditioning. Comparative Cognition and Behavior Reviews, 2008, 3, .	2.0	11
31	Learning about environmental geometry: A flaw in Miller and Shettleworth's (2007) operant model Journal of Experimental Psychology, 2008, 34, 415-418.	1.9	11
32	Interpreting the Internal Structure of a Connectionist Model of the Balance Scale Task. Brain and Mind, 2003, 4, 129-149.	0.6	10
33	Using hardware interrupts for timing visual displays and reaction-time key interfacing on the Commodore 64. Behavior Research Methods, 1988, 20, 41-48.	1.3	9
34	The multidimensional analysis of asymmetries in alphabetic confusion matrices: Evidence for global-to-local and local-to-global processing. Perception & Psychophysics, 1986, 40, 370-383.	2.3	8

35	Title is missing!. Spatial Cognition and Computation, 2000, 2, 181-218.	0.6	8

From embodied cognitive science to synthetic psychology. , 0, , . 36

MICHAEL R W DAWSON

#	Article	IF	CITATIONS
37	Hemispheric performance in object-based attention. Psychonomic Bulletin and Review, 2004, 11, 84-91.	1.4	7
38	Development of a contact call in black-capped chickadees (<i>Poecile atricapillus</i>) hand-reared in different acoustic environments. Journal of the Acoustical Society of America, 2011, 130, 2249-2256.	0.5	6
39	Artificial Neural Networks Solve Musical Problems With Fourier Phase Spaces. Scientific Reports, 2020, 10, 7151.	1.6	5
40	Equilibria of Perceptrons for Simple Contingency Problems. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1340-1344.	7.2	4
41	A case study in Gantt charts as historiophoty: A century of psychology at the University of Alberta History of Psychology, 2013, 16, 145-157.	0.1	4
42	Making a middling mousetrap. Behavioral and Brain Sciences, 1993, 16, 454-455.	0.4	3
43	The effect of adapting luminance on the latency of visual search1This research was supported by NSERC Research Grant A2038.1. Acta Psychologica, 1998, 99, 115-139.	0.7	3
44	The effects of spatial layout on relationships between performance, path patterns and mental representation in a hypermedia information search task. Interactive Technology and Smart Education, 2005, 2, 31-46.	3.8	3
45	The implications of null patterns and output unit activation functions on simulation studies of learning: A case study of patterning. Learning and Motivation, 2005, 36, 88-103.	0.6	3
46	Functional localization and double dissociations: The relationship between internal structure and behavior. Brain and Cognition, 2005, 57, 146-150.	0.8	3
47	Representing an Intrinsically Nonmetric Space of Compass Directions in an Artificial Neural Network. International Journal of Cognitive Informatics and Natural Intelligence, 2007, 1, 53-65.	0.4	3
48	Differentiating models of associative learning: Reorientation, superconditioning, and the role of inhibition Journal of Experimental Psychology, 2013, 39, 273-286.	1.9	3
49	Constraining tag-assignment from above and below. Behavioral and Brain Sciences, 1989, 12, 400-402.	0.4	2
50	An Artificial Neural Network That Uses Coarse Allocentric Coding of Direction to Represent Distances Between Locations in a Metric Space. Spatial Cognition and Computation, 2005, 5, 29-67.	0.6	2
51	Feature weighting in "chick-a-dee―call notes of Poecile atricapillus. Journal of the Acoustical Society of America, 2007, 122, 2451-2458.	0.5	2
52	Empirical issues in theoretical psychology: Comment on Kukla American Psychologist, 1990, 45, 778-780.	3.8	2
53	The problems and prospects of comparative and noncomparative theoretical psychology: A response to Kukla. New Ideas in Psychology, 1995, 13, 219-222.	1.2	1
54	Better theories are needed to distinguish perception from cognition. Behavioral and Brain Sciences, 1999, 22, 374-375.	0.4	1

MICHAEL R W DAWSON

#	Article	IF	CITATIONS
55	Review of The logic of knowledge bases Canadian Psychology, 2001, 42, 321-323.	1.4	1
56	Chord Classifications by Artificial Neural Networks Revisited: Internal Representations of Circles of Major Thirds and Minor Thirds. Lecture Notes in Computer Science, 2005, , 605-610.	1.0	1
57	Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability. PLoS ONE, 2017, 12, e0172431.	1.1	1
58	Theoretical psychology at the University of Alberta as social science during the Cold War History of Psychology, 2019, 22, 87-106.	0.1	1
59	Measurement of directional lever response reaction time with the Commodore 64. Behavior Research Methods, 1992, 24, 541-544.	1.3	0
60	Feature development, object concepts, and the scope slip. Behavioral and Brain Sciences, 2001, 24, 1146-1147.	0.4	0
61	Review of The Cambridge handbook of situated cognition Canadian Psychology, 2010, 51, 69-71.	1.4	Ο
62	Get out of the corner: Inhibition and the effect of location type and number on perceptron and human reorientation. Learning and Behavior, 2013, 41, 360-378.	0.5	0
63	Cognitive Impenetrability. , 2017, , 1-3.		0
64	Key-finding by artificial neural networks that learn about key profiles Canadian Journal of Experimental Psychology, 2018, 72, 153-170.	0.7	0
65	Performing More Logic with Perceptrons. , 0, , 81-85.		0
66	Network by Problem Type Interactions. , 0, , 91-93.		0
67	The Multilayer Perceptron. , 0, , 108-113.		0
68	Beyond the Perceptron's Limits. , 0, , 129-132.		0
69	Symmetry as a Second Case Study. , 0, , 133-136.		0
70	How Many Hidden Units?. , 0, , 137-144.		0
71	Scaling Up with the Parity Problem. , 0, , 145-150.		0

5

#	Article	IF	CITATIONS
73	Interpreting Distributed Representations. , 0, , 174-182.		Ο
74	Introducing Hebb Learning. , 0, , 22-29.		0
75	Distributed Networks and Human Memory. , 0, , 41-45.		ο
76	Limitations of Delta Rule Learning. , 0, , 46-47.		0
77	Cognitive Impenetrability. , 2022, , 1500-1502.		0