Trudi Schüpbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/677500/publications.pdf Version: 2024-02-01

TRUDI SCHÃ1/ABACH

#	Article	IF	CITATIONS
1	The drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGFα-like protein. Cell, 1993, 75, 165-174.	28.9	513
2	cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell, 1995, 81, 967-978.	28.9	477
3	Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's Archives of Developmental Biology, 1986, 195, 302-317.	1.2	405
4	Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell, 1987, 49, 699-707.	28.9	380
5	The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell, 1989, 56, 1085-1092.	28.9	290
6	zucchini and squash Encode Two Putative Nucleases Required for rasiRNA Production in the Drosophila Germline. Developmental Cell, 2007, 12, 851-862.	7.0	283
7	The Vacuolar Proton Pump, V-ATPase, Is Required for Notch Signaling and Endosomal Trafficking in Drosophila. Developmental Cell, 2009, 17, 387-402.	7.0	213
8	Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nature Cell Biology, 1999, 1, 354-357.	10.3	202
9	The Drosophila TGF-α-like protein Gurken: expression and cellular localization during Drosophila oogenesis. Mechanisms of Development, 1996, 59, 105-113.	1.7	162
10	The Spatiotemporal Limits of Developmental Erk Signaling. Developmental Cell, 2017, 40, 185-192.	7.0	158
11	cutoff and aubergine Mutations Result in Retrotransposon Upregulation and Checkpoint Activation in Drosophila. Current Biology, 2007, 17, 637-642.	3.9	156
12	NORMAL FEMALE GERM CELL DIFFERENTIATION REQUIRES THE FEMALE <i>X</i> CHROMOSOME TO AUTOSOME RATIO AND EXPRESSION OF SEX-LETHAL IN <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1985, 109, 529-548.	2.9	150
13	Three-Dimensional Epithelial Morphogenesis in the Developing Drosophila Egg. Developmental Cell, 2013, 24, 400-410.	7.0	133
14	Activation of a Meiotic Checkpoint during Drosophila Oogenesis Regulates the Translation of Gurken through Chk2/Mnk. Current Biology, 2002, 12, 1645-1651.	3.9	129
15	Autosomal mutations that interfere with sex determination in somatic cells of Drosophila have no direct effect on the germline. Developmental Biology, 1982, 89, 117-127.	2.0	125
16	D-cbl, a Negative Regulator of the Egfr Pathway, Is Required for Dorsoventral Patterning in Drosophila Oogenesis. Cell, 2000, 103, 51-61.	28.9	119
17	Hrb27C, Sqd and Otu cooperatively regulate gurken RNA localization and mediate nurse cell chromosome dispersion in Drosophila oogenesis. Development (Cambridge), 2004, 131, 1949-1958.	2.5	109
18	Multiple EGFR ligands participate in guiding migrating border cells. Developmental Biology, 2006, 296, 94-103.	2.0	103

Trudi Schüpbach

#	Article	IF	CITATIONS
19	Versatility in signalling: multiple responses to EGF receptor activation during Drosophila oogenesis. Trends in Cell Biology, 1999, 9, 1-4.	7.9	92
20	Localization of gurken RNA in Drosophila Oogenesis Requires Elements in the 5′ and 3′ Regions of the Transcript. Developmental Biology, 2000, 221, 435-446.	2.0	89
21	Maternal control of Drosophila segmentation gene expression. Nature, 1986, 323, 278-280.	27.8	81
22	Crag Regulates Epithelial Architecture and Polarized Deposition of Basement Membrane Proteins in Drosophila. Developmental Cell, 2008, 14, 354-364.	7.0	80
23	The transmembrane region of Gurken is not required for biological activity, but is necessary for transport to the oocyte membrane in Drosophila. Mechanisms of Development, 1999, 89, 35-42.	1.7	79
24	Quantifying the Gurken Morphogen Gradient in Drosophila Oogenesis. Developmental Cell, 2006, 11, 263-272.	7.0	78
25	Drosophila brca2 Is Required for Mitotic and Meiotic DNA Repair and Efficient Activation of the Meiotic Recombination Checkpoint. PLoS Genetics, 2008, 4, e31.	3.5	78
26	The Drosophila <i>spn-D</i> Gene Encodes a RAD51C-Like Protein That Is Required Exclusively During Meiosis. Genetics, 2003, 165, 197-204.	2.9	76
27	Localized Requirements for windbeutel and pipe Reveal a Dorsoventral Prepattern within the Follicular Epithelium of the Drosophila Ovary. Cell, 1998, 93, 253-262.	28.9	71
28	The dynamics of fluorescently labeled endogenous <i>gurken</i> mRNA in <i>Drosophila</i> . Journal of Cell Science, 2008, 121, 887-894.	2.0	68
29	The embryonic organization of the genital disc studied in genetic mosaics ofDrosophila melanogaster. Wilhelm Roux's Archives of Developmental Biology, 1978, 185, 249-270.	1.4	66
30	A Combinatorial Code for Pattern Formation in Drosophila Oogenesis. Developmental Cell, 2008, 15, 725-737.	7.0	65
31	Squid, Cup, and PABP55B function together to regulate gurken translation in Drosophila. Developmental Biology, 2008, 313, 713-724.	2.0	63
32	Dynamics of Inductive ERK Signaling in the Drosophila Embryo. Current Biology, 2015, 25, 1784-1790.	3.9	62
33	Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nature Genetics, 2017, 49, 465-469.	21.4	51
34	Phantom, a cytochrome P450 enzyme essential for ecdysone biosynthesis, plays a critical role in the control of border cell migration in Drosophila. Developmental Biology, 2014, 386, 408-418.	2.0	47
35	Cct1, a phosphatidylcholine biosynthesis enzyme, is required for Drosophila oogenesis and ovarian morphogenesis. Development (Cambridge), 2003, 130, 6075-6087.	2.5	46
36	In vivo severity ranking of Ras pathway mutations associated with developmental disorders. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 510-515.	7.1	44

Trudi Schüpbach

#	Article	IF	CITATIONS
37	<i>Drosophila</i> PI4KIIIalpha is required in follicle cells for oocyte polarization and Hippo signaling. Development (Cambridge), 2011, 138, 1697-1703.	2.5	41
38	Polarized deposition of basement membrane proteins depends on Phosphatidylinositol synthase and the levels of Phosphatidylinositol 4,5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7689-7694.	7.1	38
39	A study of the female germ line in mosaics ofDrosophila. Wilhelm Roux's Archives of Developmental Biology, 1978, 184, 41-56.	1.4	36
40	The role of brinker in eggshell patterning. Mechanisms of Development, 2006, 123, 395-406.	1.7	35
41	CoREST acts as a positive regulator of Notch signaling in the follicle cells of Drosophila melanogaster. Journal of Cell Science, 2012, 125, 399-410.	2.0	30
42	Stratum, a Homolog of the Human GEF Mss4, Partnered with Rab8, Controls the Basal Restriction of Basement Membrane Proteins in Epithelial Cells. Cell Reports, 2017, 18, 1831-1839.	6.4	30
43	Modulation of <i>gurken</i> Translation by Insulin/TOR Signaling in Drosophila. Journal of Cell Science, 2012, 125, 1407-19.	2.0	29
44	Regulation of somatic myosin activity by Protein Phosphatase 1β controls <i>Drosophila</i> oocyte polarization. Development (Cambridge), 2011, 138, 1991-2001.	2.5	27
45	A Gene Expression Screen in <i>Drosophila melanogaster</i> Identifies Novel JAK/STAT and EGFR Targets During Oogenesis. G3: Genes, Genomes, Genetics, 2019, 9, 47-60.	1.8	27
46	An essential role for Drosophila hus1 in somatic and meiotic DNA damage responses. Journal of Cell Science, 2007, 120, 1042-1049.	2.0	23
47	Diversity of epithelial morphogenesis during eggshell formation in drosophilids. Development (Cambridge), 2015, 142, 1971-1977.	2.5	21
48	Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. Current Topics in Developmental Biology, 2020, 140, 55-86.	2.2	19
49	Genetic Screens to Analyze Pattern Formation of Egg and Embryo in <i>Drosophila</i> : A Personal History. Annual Review of Genetics, 2019, 53, 1-18.	7.6	18
50	A quantitative model of developmental RTK signaling. Developmental Biology, 2018, 442, 80-86.	2.0	15
51	Integrative analysis unveils new functions for the <i>Drosophila</i> Cutoff protein in noncoding RNA biogenesis and gene regulation. Rna, 2017, 23, 1097-1109.	3.5	13
52	Repression of Gurken translation by a meiotic checkpoint in <i>Drosophila</i> oogenesis is suppressed by a reduction in the dose of <i>elF1A</i> . Development (Cambridge), 2014, 141, 3910-3921.	2.5	12
53	Signaling through the G-protein-coupled receptor Rickets is important for polarity, detachment, and migration of the border cells in Drosophila. Developmental Biology, 2016, 414, 193-206.	2.0	7
54	Molecular mechanisms underlying cellular effects of human MEK1 mutations. Molecular Biology of the Cell, 2021, 32, 974-983.	2.1	6

#	Article	IF	CITATIONS
55	Developmental Biology: Pipe's Smoking Guns. Current Biology, 2009, 19, R548-R550.	3.9	3
56	The Complexities and Unexpected Insights of Developmental Genetic Analysis. Current Topics in Developmental Biology, 2016, 117, 319-330.	2.2	2
57	Drosophila brca2 is Required for Mitotic and Meiotic DNA Repair and Efficient Activation of the Meiotic Recombination Checkpoint. PLoS Genetics, 2005, preprint, e31.	3.5	0