Indrek Must

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6774598/publications.pdf Version: 2024-02-01

INDDER MUST

#	Article	IF	CITATIONS
1	A Self-Commutated Helical Polypyrrole Actuator Fabricated by Filament Patterning. IEEE Robotics and Automation Letters, 2022, 7, 5858-5865.	5.1	0
2	A leaf-inspired robot combining embroidered structure with ion-induced actuation. , 2022, , .		0
3	Effects of ionic liquids and dual curing on vat photopolymerization process and properties of 3d-printed ionogels. Additive Manufacturing, 2022, 56, 102895.	3.0	2
4	Fabrication of Carbon-Based Ionic Electromechanically Active Soft Actuators. Journal of Visualized Experiments, 2020, , .	0.3	3
5	An All-Textile Non-muscular Biomimetic Actuator Based on Electrohydrodynamic Swelling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 408.	4.1	8
6	Comparison of the Carbon Nanofiber-/Fiber- and Silicone-Based Electrodes for Bioimpedance Measurements. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1455-1463.	4.7	5
7	A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nature Communications, 2019, 10, 344.	12.8	130
8	Ionic Actuators as Manipulators for Microscopy. Frontiers in Robotics and AI, 2019, 6, 140.	3.2	4
9	Scalable fabrication of ionic and capacitive laminate actuators for soft robotics. Sensors and Actuators B: Chemical, 2017, 246, 154-163.	7.8	35
10	Direct assessment of solid–liquid interface noise in ion sensing using a differential method. Applied Physics Letters, 2016, 108, .	3.3	12
11	Electrochemically and Electrothermally Driven Carbon-Based Materials as EAPs: How to Start Experimenting with Them. , 2016, , 471-486.		0
12	Electrochemically and Electrothermally Driven Carbon-Based Materials as EAPs: How to Start Experimenting with Them. , 2016, , 1-16.		0
13	In situ scanning electron microscopy study of strains of ionic electroactive polymer actuators. Journal of Intelligent Material Systems and Structures, 2016, 27, 1061-1074.	2.5	18
14	A power-autonomous self-rolling wheel using ionic and capacitive actuators. Proceedings of SPIE, 2015, , .	0.8	4
15	Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics. Advanced Engineering Materials, 2015, 17, 84-94.	3.5	141
16	Long-term degradation of the ionic electroactive polymer actuators. Proceedings of SPIE, 2015, , .	0.8	2
17	Thermal behavior of ionic electroactive polymer actuators. , 2015, , .		3

18 In situmeasurements with CPC micro-actuators using SEM. , 2014, , .

0

Indrek Must

#	Article	IF	CITATIONS
19	Smart insole sensors for sports and rehabilitation. Proceedings of SPIE, 2014, , .	0.8	5
20	Lifetime measurements of ionic electroactive polymer actuators. Journal of Intelligent Material Systems and Structures, 2014, 25, 2267-2275.	2.5	12
21	Pulse-width-modulated charging of ionic and capacitive actuators. , 2014, , .		3
22	Carbide-derived carbon as active interlayer of polypyrrole tri-layer linear actuator. Sensors and Actuators B: Chemical, 2014, 201, 100-106.	7.8	14
23	Ionic liquid-based actuators working in air: The effect of ambient humidity. Sensors and Actuators B: Chemical, 2014, 202, 114-122.	7.8	63
24	Ionic electroactive polymer artificial muscles in space applications. Scientific Reports, 2014, 4, 6913.	3.3	64
25	Charging a supercapacitor-like laminate with ambient moisture: from a humidity sensor to an energy harvester. Physical Chemistry Chemical Physics, 2013, 15, 9605.	2.8	50
26	Mechanoelectrical impedance of a carbide-derived carbon-based laminate motion sensor at large bending deflections. Smart Materials and Structures, 2013, 22, 104015.	3.5	8
27	An ionic liquid-based actuator as a humidity sensor. , 2013, , .		1
28	Ionic EAP transducers with amorphous nanoporous carbon electrodes. Proceedings of SPIE, 2012, , .	0.8	0
29	Carbon-polymer-ionic liquid composite as a motion sensor. Proceedings of SPIE, 2012, , .	0.8	1
30	A carbide-derived carbon laminate used as a mechanoelectrical sensor. Carbon, 2012, 50, 535-541.	10.3	35
31	Combined chemical and electrochemical synthesis methods for metal-free polypyrrole actuators. Sensors and Actuators B: Chemical, 2012, 166-167, 411-418.	7.8	54
32	Linear modeling of elongated bending EAP actuator at large deformations. Proceedings of SPIE, 2009, ,	0.8	5