Satyapriya Bhandari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6774385/publications.pdf

Version: 2024-02-01

516710 552781 31 713 16 26 citations g-index h-index papers 31 31 31 943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surface-modified quantum dots for advanced sensing applications. , 2022, , 243-282.		1
2	Recognition and ratiometric visual sensing of long-chain unsaturated fatty acids by a white-light-emitting quantum-dot complex. Journal of Materials Chemistry C, 2021, 9, 13810-13817.	5 . 5	4
3	A Ratiometric and Visual Sensing of Phosphate by White Light Emitting Quantum Dot Complex. Langmuir, 2021, 37, 5506-5512.	3. 5	8
4	Dynamics of a bifunctional motor under crowded conditions. Materials Today Communications, 2021, 28, 102504.	1.9	8
5	Physical insights into the facilitation of an unprecedented complexation reaction on the surface of a doped quantum dot leading to white light generation. Physical Chemistry Chemical Physics, 2021, 23, 9860-9866.	2.8	2
6	The quantum dot-FRET-based detection of vitamin B12 at a picomolar level. Nanoscale Advances, 2020, 2, 3809-3814.	4.6	7
7	A dual-emitting quantum dot complex nanoprobe for ratiometric and visual detection of Hg ²⁺ and Cu ²⁺ ions. Journal of Materials Chemistry C, 2020, 8, 6972-6976.	5 . 5	20
8	Engineering Quantum Dots with Ionic Liquid: A Multifunctional White Light Emitting Hydrogel for Enzyme Packaging. Advanced Optical Materials, 2020, 8, 1902022.	7.3	16
9	Luminescence Enhancement based Sensing of L ysteine by Doped Quantum Dots. Chemistry - an Asian Journal, 2020, 15, 1948-1952.	3.3	6
10	Chemical Reactions Involving the Surface of Metal Chalcogenide Quantum Dots. Langmuir, 2019, 35, 14399-14413.	3.5	14
11	Hue―and Chromaticityâ€Based Exploration of Surface Complexationâ€Induced Tunable Emission from Nonâ€Luminescent Quantum Dots. Chemistry - an Asian Journal, 2019, 14, 3823-3829.	3.3	2
12	Biomolecule-derived quantum dots for sustainable optoelectronics. Nanoscale Advances, 2019, 1, 913-936.	4.6	42
13	The nature of binding of quinolate complex on the surface of ZnS quantum dots. Physical Chemistry Chemical Physics, 2019, 21, 589-596.	2.8	5
14	Enhanced Luminescence of a Quantum Dot Complex Following Interaction with Protein for Applications in Cellular Imaging, Sensing, and White-Light Generation. ACS Applied Nano Materials, 2019, 2, 2358-2366.	5.0	10
15	A two-target responsive reversible ratiometric pH nanoprobe: a white light emitting quantum dot complex. Chemical Communications, 2019, 55, 4331-4334.	4.1	20
16	A White Lightâ€Emitting Quantum Dot Complex for Single Particle Level Interaction with Dopamine Leading to Changes in Color and Blinking Profile. Small, 2018, 14, e1800323.	10.0	16
17	Crystalline nanoscale assembly of gold clusters for reversible storage and sensing of CO ₂ <i>via</i> modulation of photoluminescence intermittency. Journal of Materials Chemistry C, 2018, 6, 8205-8211.	5.5	18
18	Surface Complexed ZnO Quantum Dot for White Light Emission with Controllable Chromaticity and Color Temperature. Langmuir, 2017, 33, 14627-14633.	3 . 5	24

#	Article	IF	Citations
19	Zinc quinolate complex decorated CulnS ₂ /ZnS core/shell quantum dots for white light emission. Journal of Materials Chemistry C, 2017, 5, 7291-7296.	5.5	17
20	Gold Nanocluster and Quantum Dot Complex in Protein for Biofriendly White-Light-Emitting Material. ACS Applied Materials & Emp.; Interfaces, 2016, 8, 1600-1605.	8.0	48
21	Drug Delivery: Gold Nanocluster Embedded Albumin Nanoparticles for Two-Photon Imaging of Cancer Cells Accompanying Drug Delivery (Small 33/2015). Small, 2015, 11, 4074-4074.	10.0	0
22	Double Channel Emission from a Redox Active Single Component Quantum Dot Complex. Langmuir, 2015, 31, 551-561.	3.5	21
23	Surface Complexation-Based Biocompatible Magnetofluorescent Nanoprobe for Targeted Cellular Imaging. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17552-17557.	8.0	27
24	Synchronous Tricolor Emission-Based White Light from Quantum Dot Complex. Journal of Physical Chemistry Letters, 2015, 6, 1270-1274.	4.6	43
25	Gold Nanocluster Embedded Albumin Nanoparticles for Twoâ€Photon Imaging of Cancer Cells Accompanying Drug Delivery. Small, 2015, 11, 4075-4081.	10.0	132
26	Quantum Dot Surface Mediated Unprecedented Reaction of Zn ²⁺ and Copper Quinolate Complex. Journal of Physical Chemistry C, 2015, 119, 21191-21197.	3.1	14
27	Surface Complexation Reaction for Phase Transfer of Hydrophobic Quantum Dot from Nonpolar to Polar Medium. Langmuir, 2014, 30, 10760-10765.	3.5	15
28	Enhanced photoluminescence and thermal stability of zinc quinolate following complexation on the surface of quantum dots. RSC Advances, 2014, 4, 24217.	3.6	28
29	The pH Taxis of an Intelligent Catalytic Microbot. Small, 2013, 9, 1916-1920.	10.0	102
30	Surface ion engineering for tuning dual emission of ZnxCd1â^'xS nanocrystals. RSC Advances, 2013, 3, 2885.	3.6	19
31	Surface Ion Engineering of Mn ²⁺ -Doped ZnS Quantum Dots Using Ion-Exchange Resins. Langmuir, 2012, 28, 9722-9728.	3.5	24