Tor-Erik Rusten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6774214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computed tomography with segmentation and quantification of individual organs in a D. melanogaster tumor model. Scientific Reports, 2022, 12, 2056.	3.3	1
2	Autophagy power expands: fuse those cells!. EMBO Journal, 2022, , e111424.	7.8	1
3	RNA-Binding RING E3-Ligase DZIP3/hRUL138 Stabilizes Cyclin D1 to Drive Cell-Cycle and Cancer Progression. Cancer Research, 2021, 81, 315-331.	0.9	14
4	Natural abundance isotope ratios to differentiate sources of carbon used during tumor growth in vivo. BMC Biology, 2021, 19, 85.	3.8	6
5	Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO Journal, 2021, 40, e107336.	7.8	25
6	RasV12; scribâ^'/â^' Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions. International Journal of Molecular Sciences, 2021, 22, 8873.	4.1	10
7	Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell, 2021, 184, 5950-5969.e22.	28.9	54
8	Mammalian Atg8-family proteins are upstream regulators of the lysosomalsystem by controlling MTOR and TFEB. Autophagy, 2020, 16, 2305-2306.	9.1	11
9	Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nature Cell Biology, 2020, 22, 973-985.	10.3	55
10	Autoimmunity gene <scp>IRGM</scp> suppresses <scp>cGAS</scp> ― <scp>STING</scp> and <scp>RIG</scp> â€l― <scp>MAVS</scp> signaling to control interferon response. EMBO Reports, 2020, 21, e50051.	4.5	48
11	Cell Competition Triggers Suicide by Autophagy. Developmental Cell, 2019, 51, 4-5.	7.0	30
12	Autophagy and Tumorigenesis in Drosophila. Advances in Experimental Medicine and Biology, 2019, 1167, 113-127.	1.6	6
13	Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation. Developmental Cell, 2019, 49, 130-144.e6.	7.0	99
14	NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature Communications, 2019, 10, 5284.	12.8	165
15	Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. Journal of Cell Biology, 2018, 217, 997-1013.	5.2	115
16	Microenvironmental autophagy promotes tumour growth. Nature, 2017, 541, 417-420.	27.8	379
17	Microenvironment and tumors—a nurturing relationship. Autophagy, 2017, 13, 1241-1243.	9.1	18
18	Class III phosphatidylinositol-3-OH kinase controls epithelial integrity through endosomal LKB1 regulation. Nature Cell Biology, 2017, 19, 1412-1423.	10.3	28

TOR-ERIK RUSTEN

#	Article	IF	CITATIONS
19	Genetic Screen in Drosophila Larvae Links ird1 Function to Toll Signaling in the Fat Body and Hemocyte Motility. PLoS ONE, 2016, 11, e0159473.	2.5	9
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
21	p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB. Journal of Biological Chemistry, 2015, 290, 14945-14962.	3.4	61
22	Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in <i>Drosophila</i> . Autophagy, 2014, 10, 2251-2268.	9.1	72
23	Production of phosphatidylinositol 5â€phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Reports, 2013, 14, 57-64.	4.5	64
24	Two-Tiered Control of Epithelial Growth and Autophagy by the Insulin Receptor and the Ret-Like Receptor, Stitcher. PLoS Biology, 2013, 11, e1001612.	5.6	22
25	Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. Journal of Cell Biology, 2013, 202, 331-349.	5.2	154
26	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
27	Shaping development with ESCRTs. Nature Cell Biology, 2012, 14, 38-45.	10.3	111
28	p62, an autophagy hero or culprit?. Nature Cell Biology, 2010, 12, 207-209.	10.3	202
29	PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nature Cell Biology, 2010, 12, 362-371.	10.3	195
30	Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late <i>Drosophila melanogaster</i> oogenesis. Journal of Cell Biology, 2010, 190, 523-531.	5.2	224
31	Disruption of Vps4 and JNK Function in Drosophila Causes Tumour Growth. PLoS ONE, 2009, 4, e4354.	2.5	50
32	Cell death during <i>Drosophila melanogaster</i> early oogenesis is mediated through autophagy. Autophagy, 2009, 5, 298-302.	9.1	124
33	Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in <i>Drosophila</i> by efficient isolation of ESCRT mutants. Journal of Cell Science, 2009, 122, 2413-2423.	2.0	136
34	How do ESCRT proteins control autophagy?. Journal of Cell Science, 2009, 122, 2179-2183.	2.0	146
35	ESCRT functions in autophagy and associated disease. Cell Cycle, 2008, 7, 1166-1172.	2.6	94
36	The PI 3-kinase regulator Vps15 is required for autophagic clearance of protein aggregates. Autophagy, 2008, 4, 500-506.	9.1	58

TOR-ERIK RUSTEN

#	Article	IF	CITATIONS
37	Ref(2)P, the <i>Drosophila melanogaster</i> homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. Journal of Cell Biology, 2008, 180, 1065-1071.	5.2	369
38	ESCRTing autophagic clearance of aggregating proteins. Autophagy, 2008, 4, 233-236.	9.1	34
39	Genetic Modifiers of the Drosophila Blue Cheese Gene Link Defects in Lysosomal Transport With Decreased Life Span and Altered Ubiquitinated-Protein Profiles. Genetics, 2007, 176, 1283-1297.	2.9	78
40	Origin and Evolution of Self-Consumption: Autophagy. Advances in Experimental Medicine and Biology, 2007, 607, 111-118.	1.6	36
41	Moonlighting at the pole. Nature, 2007, 445, 497-499.	27.8	36
42	ESCRTs and Fab1 Regulate Distinct Steps of Autophagy. Current Biology, 2007, 17, 1817-1825.	3.9	292
43	A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body. Experimental Cell Research, 2006, 312, 2018-2027.	2.6	73
44	Analyzing phosphoinositides and their interacting proteins. Nature Methods, 2006, 3, 251-258.	19.0	108
45	Fab1 Phosphatidylinositol 3-Phosphate 5-Kinase Controls Trafficking but Not Silencing of Endocytosed Receptors. Molecular Biology of the Cell, 2006, 17, 3989-4001.	2.1	112
46	Programmed Autophagy in the Drosophila Fat Body Is Induced by Ecdysone through Regulation of the PI3K Pathway. Developmental Cell, 2004, 7, 179-192.	7.0	434
47	Protein sorting into multivesicular endosomes. Current Opinion in Cell Biology, 2003, 15, 446-455.	5.4	456
48	Characterization and tissue expression of acidic fibroblast growth factor binding protein homologue in Drosophila melanogaster. Gene, 2003, 310, 185-191.	2.2	4