
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6774073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing vegetable intakes: rationale and systematic review of published interventions. European Journal of Nutrition, 2016, 55, 869-896.	1.8	193
2	How does it make you feel? A new approach to measuring emotions in food product experience. Food Quality and Preference, 2014, 37, 109-122.	2.3	192
3	Influence of information about manufacturing process on beer acceptability. Food Quality and Preference, 2004, 15, 271-278.	2.3	165
4	Consumer expectations for sensory properties in virgin olive oils. Food Quality and Preference, 2006, 17, 116-125.	2.3	161
5	Emotional responses to branded and unbranded foods. Food Quality and Preference, 2015, 42, 1-11.	2.3	143
6	Exploring influences on food choice in a large population sample: The Italian Taste project. Food Quality and Preference, 2017, 59, 123-140.	2.3	128
7	Prediction of perceived astringency induced by phenolic compounds. Food Quality and Preference, 2004, 15, 761-769.	2.3	111
8	Associations between food neophobia and responsiveness to "warning―chemosensory sensations in food products in a large population sample. Food Quality and Preference, 2018, 68, 113-124.	2.3	100
9	Saliva Characteristics and Individual Sensitivity to Phenolic Astringent Stimuli. Chemical Senses, 2009, 34, 295-304.	1.1	97
10	Projective Mapping for interpreting wine aroma differences as perceived by naÃ ⁻ ve and experienced assessors. Food Quality and Preference, 2013, 29, 6-15.	2.3	93
11	The impact of individual variations in taste sensitivity on coffee perceptions and preferences. Physiology and Behavior, 2015, 138, 219-226.	1.0	91
12	Sensory food science in the changing society: Opportunities, needs, and challenges. Trends in Food Science and Technology, 2009, 20, 54-62.	7.8	88
13	The influence of psychological traits, beliefs and taste responsiveness on implicit attitudes toward plant- and animal-based dishes among vegetarians, flexitarians and omnivores. Food Quality and Preference, 2018, 68, 276-291.	2.3	85
14	Inclusion of <i>Hermetia illucens</i> larvae meal on rainbow trout (<i>Oncorhynchus mykiss</i>) feed: effect on sensory profile according to static and dynamic evaluations. Journal of the Science of Food and Agriculture, 2017, 97, 3402-3411.	1.7	82
15	Individual astringency responsiveness affects the acceptance of phenol-rich foods. Appetite, 2011, 56, 633-642.	1.8	81
16	A sense of sustainability? – How sensory consumer science can contribute to sustainable development of the food sector. Trends in Food Science and Technology, 2019, 90, 180-186.	7.8	80
17	Effect of information about animal welfare and product nutritional properties on acceptability of meat from Podolian cattle. Food Quality and Preference, 2007, 18, 305-312.	2.3	79
18	Lamb meat — Importance of origin and grazing system for Italian and Norwegian consumers. Meat Science, 2012, 90, 899-907.	2.7	78

#	Article	IF	CITATIONS
19	Temporary Modification of Salivary Protein Profile and Individual Responses to Repeated Phenolic Astringent Stimuli. Chemical Senses, 2010, 35, 75-85.	1.1	76
20	Personality traits and gender influence liking and choice of food pungency. Food Quality and Preference, 2018, 66, 113-126.	2.3	73
21	Bitterness enhancement induced by cut grass odorant (cis-3-hexen-1-ol) in a model olive oil. Food Quality and Preference, 2004, 15, 219-227.	2.3	70
22	Prediction of perceived astringency induced by phenolic compounds II: Criteria for panel selection and preliminary application on wine samples. Food Quality and Preference, 2006, 17, 96-107.	2.3	70
23	Sensory functionality of extra-virgin olive oil in vegetable foods assessed by Temporal Dominance of Sensations and Descriptive Analysis. Food Quality and Preference, 2012, 26, 141-150.	2.3	69
24	Research challenges and methods to study food preferences in school-aged children: A review of the last 15years. Food Quality and Preference, 2015, 46, 92-102.	2.3	69
25	A new approach in TDS data analysis: A case study on sweetened coffee. Food Quality and Preference, 2013, 30, 33-46.	2.3	67
26	Comparison of three nudge interventions (priming, default option, and perceived variety) to promote vegetable consumption in a self-service buffet setting. PLoS ONE, 2017, 12, e0176028.	1.1	66
27	Linking product-elicited emotional associations and sensory perceptions through a circumplex model based on valence and arousal: Five consumer studies. Food Research International, 2018, 109, 626-640.	2.9	64
28	Spectrophotometric assay using o-phtaldialdehyde for the determination of transglutaminase activity on casein. Food Chemistry, 2002, 78, 363-368.	4.2	56
29	Effects of evoked meal contexts on consumers' responses to intrinsic and extrinsic product attributes in dry-cured ham. Food Quality and Preference, 2015, 40, 191-198.	2.3	55
30	Relationship Between Odor Intensity Estimates and COVID-19 Prevalence Prediction in a Swedish Population. Chemical Senses, 2020, 45, 449-456.	1.1	53
31	Bioaccessibility and Antioxidant Activity Stability of Phenolic Compounds from Extra-Virgin Olive Oils during <i>in Vitro</i> Digestion. Journal of Agricultural and Food Chemistry, 2007, 55, 8423-8429.	2.4	48
32	Hedonic ratings and consumption of school lunch among preschool children. Food Quality and Preference, 2009, 20, 482-489.	2.3	48
33	A Systematic Review of Behavioural Interventions Promoting Healthy Eating among Older People. Nutrients, 2018, 10, 128.	1.7	48
34	Sensory determinants of stated liking for vegetable names and actual liking for canned vegetables: A cross-country study among European adolescents. Appetite, 2016, 107, 339-347.	1.8	46
35	Individual Variation in PROP Status, Fungiform Papillae Density, and Responsiveness to Taste Stimuli in a Large Population Sample. Chemical Senses, 2018, 43, 697-710.	1.1	45
36	Effect of expectations induced by information on origin and its guarantee on the acceptability of a traditional food: olive oil. Sciences Des Aliments, 2001, 21, 243-254.	0.2	45

#	Article	IF	CITATIONS
37	Responses to extra virgin olive oils in consumers with varying commitment to oils. Food Quality and Preference, 2012, 24, 153-161.	2.3	43
38	Investigating preferred coffee consumption contexts using open-ended questions. Food Quality and Preference, 2017, 61, 63-73.	2.3	42
39	Gender, Age, Geographical Area, Food Neophobia and Their Relationships with the Adherence to the Mediterranean Diet: New Insights from a Large Population Cross-Sectional Study. Nutrients, 2020, 12, 1778.	1.7	41
40	SENSORY PROFILE DESCRIPTION OF MOZZARELLA CHEESE AND ITS RELATIONSHIP WITH CONSUMER PREFERENCE. Journal of Sensory Studies, 1997, 12, 285-301.	0.8	40
41	An exploratory study of sensory attributes and consumer traits underlying liking for and perceptions of freshness for ready to eat mixed salad leaves in Italy. Food Research International, 2014, 59, 108-116.	2.9	40
42	A sensory- and consumer-based approach to optimize cheese enrichment with grape skin powders. Journal of Dairy Science, 2016, 99, 194-204.	1.4	38
43	Statistical validation of sensory data: a study on wine. Journal of the Science of Food and Agriculture, 2001, 81, 751-758.	1.7	37
44	Optimisation of extra virgin olive oil quality. Journal of the Science of Food and Agriculture, 1998, 77, 31-37.	1.7	36
45	Consumption of a High Quantity and a Wide Variety of Vegetables Are Predicted by Different Food Choice Motives in Older Adults from France, Italy and the UK. Nutrients, 2017, 9, 923.	1.7	35
46	Influences of Psychological Traits and PROP Taster Status on Familiarity with and Choice of Phenol-Rich Foods and Beverages. Nutrients, 2019, 11, 1329.	1.7	35
47	When are "Dish of the Day―nudges most effective to increase vegetable selection?. Food Policy, 2019, 85, 15-27.	2.8	34
48	Sensory drivers of product-elicited emotions are moderated by liking: Insights from consumer segmentation. Food Quality and Preference, 2019, 78, 103725.	2.3	33
49	Perceptions of Starchy Food Dishes: Application of the Repertory Grid Method. Appetite, 1997, 28, 255-265.	1.8	31
50	Functional and sensory properties of phenolic compounds from unripe grapes in vegetable food prototypes. Food Chemistry, 2020, 315, 126291.	4.2	31
51	Promotion of novel plant-based dishes among older consumers using the â€~dish of the day' as a nudging strategy in 4 EU countries. Food Quality and Preference, 2019, 75, 260-272.	2.3	30
52	The Meaning of Emoji to Describe Food Experiences in Pre-Adolescents. Foods, 2020, 9, 1307.	1.9	29
53	Children's selection of emojis to express food-elicited emotions in varied eating contexts. Food Quality and Preference, 2020, 85, 103953.	2.3	28
54	Remote testing: Sensory test during Covid-19 pandemic and beyond. Food Quality and Preference, 2022, 96, 104437.	2.3	27

#	Article	IF	CITATIONS
55	MAPPING THE EFFECT OF INFORMATION ABOUT ANIMAL WELFARE ON CONSUMER LIKING AND WILLINGNESS TO PAY FOR YOGURT. Journal of Sensory Studies, 2009, 24, 712-730.	0.8	26
56	Development and validation of a quantitative frame of reference for meat sensory evaluation. Food Quality and Preference, 2012, 25, 63-68.	2.3	25
57	Associations between human fungiform papillae and responsiveness to oral stimuli: effects of individual variability, population characteristics, and methods for papillae quantification. Chemical Senses, 2018, 43, 313-327.	1.1	25
58	Sensory Properties of Underâ€Roasted Coffee Beverages. Journal of Food Science, 2013, 78, S1290-300.	1.5	22
59	Sensory description of marine oils through development of a sensory wheel and vocabulary. Food Research International, 2018, 106, 45-53.	2.9	21
60	Individual differences in perceived complexity are associated with different affective responses to alcoholic cocktails. Food Quality and Preference, 2019, 76, 47-59.	2.3	21
61	Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition. Food Research International, 2019, 119, 236-243.	2.9	21
62	Food Preferences and Obesity. Endocrinology and Metabolism, 2021, 36, 209-219.	1.3	21
63	Grape seed proteins: a new fining agent for astringency reduction in red wine. Australian Journal of Grape and Wine Research, 2013, 19, 153-160.	1.0	20
64	Descriptive sensory analysis and consumers' preference for dietary fibre- and polyphenol-enriched tomato purees obtained using winery by-products. LWT - Food Science and Technology, 2015, 62, 294-300.	2.5	20
65	Caffeine metabolism rate influences coffee perception, preferences and intake. Food Quality and Preference, 2016, 53, 97-104.	2.3	20
66	Impact of a nudging intervention and factors associated with vegetable dish choice among European adolescents. European Journal of Nutrition, 2020, 59, 231-247.	1.8	20
67	Temporal processing of olfactory stimuli during retronasal perception. Behavioural Brain Research, 2009, 200, 68-75.	1.2	19
68	Consumer Perception of Dryâ€Cured Ham – A Crossâ€Cultural Study in <scp>I</scp> taly, <scp>N</scp> orway and <scp>S</scp> pain. Journal of Sensory Studies, 2013, 28, 450-466.	0.8	18
69	Profiling Individual Differences in Alcoholic Beverage Preference and Consumption: New Insights from a Large-Scale Study. Foods, 2020, 9, 1131.	1.9	18
70	The use of enzymes for thermal process monitoring: modification of milk alkaline phosphatase heat resistance by means of an immobilization technique. Food Control, 2004, 15, 427-433.	2.8	17
71	Prediction of grape polyphenol astringency by means of a fluorimetric micro-plate assay. Food Chemistry, 2009, 113, 325-330.	4.2	17
72	Gender Differences in Fat-Rich Meat Choice: Influence of Personality and Attitudes. Nutrients, 2020, 12, 1374.	1.7	15

#	Article	IF	CITATIONS
73	Combined influence of TAS2R38 genotype and PROP phenotype on the intensity of basic tastes, astringency and pungency in the Italian taste project. Food Quality and Preference, 2022, 95, 104361.	2.3	15
74	Astringency Perception and Heritability Among Young Finnish Twins. Chemosensory Perception, 2011, 4, 134-144.	0.7	14
75	Exploring salient dimensions in a free sorting task: A cross-country study within the elderly population. Food Quality and Preference, 2017, 60, 19-30.	2.3	14
76	Nudging using the â€~dish of the day' strategy does not work for plantâ€based meals in a <scp>D</scp> anish sample of adolescent and older people. International Journal of Consumer Studies, 2018, 42, 327-334.	7.2	14
77	Individual differences in responsiveness to oral sensations and odours with chemesthetic activity: Relationships between sensory modalities and impact on the hedonic response. Food Quality and Preference, 2021, 88, 104112.	2.3	14
78	Emotional Responses to Products. , 2018, , 261-296.		13
79	Optimization of virgin olive oil quality in relation to fruit ripening and storage. Developments in Food Science, 1995, 37, 397-418.	0.0	12
80	A PROCEDURE OF SENSORY EVALUATION FOR DESCRIBING THE AROMA PROFILE OF SINGLE GRAPE VARIETY WINES. Journal of Sensory Studies, 2008, 23, 817-834.	0.8	12
81	Comparing Manual Counting to Automated Image Analysis for the Assessment of Fungiform Papillae Density on Human Tongue. Chemical Senses, 2017, 42, 553-561.	1.1	12
82	Winemaking Byproducts as Source of Antioxidant Components: Consumers' Acceptance and Expectations of Phenol-Enriched Plant-Based Food. Antioxidants, 2020, 9, 661.	2.2	12
83	Liking patterns moderate the relationship between sensory, emotional and context appropriateness profiles: Evidences from a Global Profile study on alcoholic cocktails. Food Quality and Preference, 2020, 83, 103904.	2.3	11
84	The combined use of temporal dominance of sensations (TDS) and discrete time-intensity (DTI) to describe the dynamic sensory profile of alcoholic cocktails. Food Quality and Preference, 2021, 93, 104281.	2.3	11
85	Danish adolescents like their vegetables fresh rather than frozen or canned. International Journal of Gastronomy and Food Science, 2017, 9, 29-33.	1.3	10
86	An olfactory self-test effectively screens for COVID-19. Communications Medicine, 2022, 2, .	1.9	10
87	A comparison of two new take-away strategies and their relation to rating and ranking of extrinsic properties of dry cured ham. Food Quality and Preference, 2013, 27, 63-71.	2.3	9
88	Influence of pig genetic type on sensory properties and consumer acceptance of Parma, San Daniele and Toscano dryâ€cured hams. Journal of the Science of Food and Agriculture, 2016, 96, 798-806.	1.7	9
89	Effect of glass shape on subjective and behavioral consumer responses in a real-life context of drinking consumption. Food Quality and Preference, 2018, 64, 187-191.	2.3	9
90	Consumer categorization of plant-based dishes: Implications for promoting vegetable consumption. Food Quality and Preference, 2019, 76, 133-145.	2.3	9

#	Article	IF	CITATIONS
91	Phenol-Rich Food Acceptability: The Influence of Variations in Sweetness Optima and Sensory-Liking Patterns. Nutrients, 2021, 13, 866.	1.7	9
92	Attentional bias for vegetables is negatively associated with acceptability and is related to sensory properties. Food Quality and Preference, 2022, 96, 104429.	2.3	9
93	Rapid extraction and determination of phenols in extra virgin olive oil. Developments in Food Science, 1995, 37, 429-452.	0.0	8
94	Enhanced utilisation of nonmarketable fish: physical, nutritional and sensory properties of †clean label' fish burgers. International Journal of Food Science and Technology, 2019, 54, 593-601.	1.3	8
95	Sensory perception and food neophobia drive liking of functional plantâ€based food enriched with winemaking byâ€products. Journal of Sensory Studies, 2022, 37, e12710.	0.8	8
96	Relationships between Intensity and Liking for Chemosensory Stimuli in Food Models: A Large-Scale Consumer Segmentation. Foods, 2022, 11, 5.	1.9	6
97	Sensory acceptability and personality traits both determine which contexts are preferred for consumption of alcoholic cocktails. Food Quality and Preference, 2020, 85, 103978.	2.3	5
98	Development of an emoji-based self-report measurement tool to measure emotions elicited by foods in preadolescents. Food Quality and Preference, 2022, , 104585.	2.3	5
99	The relationship between disgust sensitivity and BMI: Is the food disgusting or am I?. Food Quality and Preference, 2021, 92, 104222.	2.3	4
100	ALTERTASTE: improving food pleasure and intake of oncology patients receiving chemotherapy. Future Oncology, 2021, 17, 2573-2579.	1.1	2
101	Attitudes to Food in Italy: Evidence from the Italian Taste Project. , 2020, , 1381-1405.		2
102	Exploring the association between oral tactile sensitivity measures and phenotypic markers of oral responsiveness. Journal of Texture Studies, 2022, , .	1.1	2
103	41. New method for preference mapping. Food Quality and Preference, 1996, 7, 318-319.	2.3	0