Rui Leal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/677391/publications.pdf Version: 2024-02-01

DITEN

#	Article	IF	CITATIONS
1	Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Materials & Design, 2009, 30, 1913-1921.	5.1	179
2	Material flow in heterogeneous friction stir welding of thin aluminium sheets: Effect of shoulder geometry. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 498, 384-391.	2.6	153
3	Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Materials & Design, 2012, 33, 69-74.	5.1	124
4	Mechanical behaviour of similar and dissimilar AA5182-H111 and AA6016-T4 thin friction stir welds. Materials & Design, 2009, 30, 101-108.	5.1	109
5	Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets. Science and Technology of Welding and Joining, 2010, 15, 654-660.	1.5	101
6	Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. Journal of Materials Processing Technology, 2013, 213, 129-135.	3.1	76
7	Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayers. Journal of Materials Processing Technology, 2020, 283, 116707.	3.1	69
8	Effect of explosive mixture on quality of explosive welds of copper to aluminium. Materials and Design, 2016, 95, 256-267.	3.3	65
9	Explosive welding of aluminium to stainless steel. Journal of Materials Processing Technology, 2018, 262, 340-349.	3.1	65
10	Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds. Materials and Design, 2017, 122, 172-183.	3.3	57
11	Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds. Materials Characterization, 2018, 142, 432-442.	1.9	46
12	Effect of overlapping friction stir welding passes in the quality of welds of aluminium alloys. Materials & Design, 2008, 29, 982-991.	5.1	44
13	Effect of friction stir processing parameters on the microstructural and electrical properties of copper. International Journal of Advanced Manufacturing Technology, 2015, 80, 1655-1663.	1.5	30
14	Microstructural and mechanical characterisation of 5XXX-H111 friction stir welded tailored blanks. Science and Technology of Welding and Joining, 2011, 16, 433-439.	1.5	29
15	Influence of base material properties on copper and aluminium–copper explosive welds. Science and Technology of Welding and Joining, 2018, 23, 501-507.	1.5	26
16	Defects Formation in Friction Stir Welding of Aluminium Alloys. Materials Science Forum, 2004, 455-456, 299-302.	0.3	25
17	Effect of shoulder cavity and welding parameters on friction stir welding of thin copper sheets. Science and Technology of Welding and Joining, 2011, 16, 146-152.	1.5	24
18	Microstructure and mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced with an aluminium interlayer. Materials Characterization, 2019, 155, 109819.	1.9	24

Rui Leal

#	Article	IF	CITATIONS
19	Aluminum-to-Steel Cladding by Explosive Welding. Metals, 2020, 10, 1062.	1.0	24
20	Friction stir welding and explosive welding of aluminum/copper: process analysis. Materials and Manufacturing Processes, 2019, 34, 1243-1250.	2.7	22
21	Material flow in Friction Stir Welding. Microscopy and Microanalysis, 2008, 14, 87-90.	0.2	13
22	Joining of Fibre-Reinforced Thermoplastic Polymer Composites by Friction Stir Welding—A Review. Applied Sciences (Switzerland), 2022, 12, 2744.	1.3	9
23	Microstructure and Mechanical Properties of Friction Stir Welds in Aluminium Alloys 2024-T3, 5083-O and 6063-T6. Materials Science Forum, 2006, 514-516, 697-701.	0.3	8
24	Mechanical Behaviour of FSW Aluminium Tailored Blanks. Materials Science Forum, 0, 587-588, 961-965.	0.3	7
25	Effect of explosive ratio on explosive welding quality of copper to aluminium. Ciência & Tecnologia Dos Materiais, 2017, 29, e46-e50.	0.5	7
26	Nugget Formation and Mechanical Behaviour of Friction Stir Welds of Three Dissimilar Aluminum Alloys. Materials, 2020, 13, 2664.	1.3	7
27	Influence of Tool Geometry and Process Parameters on Torque, Temperature, and Quality of Friction Stir Welds in Dissimilar Al Alloys. Materials, 2021, 14, 6020.	1.3	5
28	Defect formation and microstructural changes in friction stir welds between pure copper and a brass alloy. Microscopy and Microanalysis, 2009, 15, 79-80.	0.2	3
29	Microstructure and Hardness of Friction Stir Welds in Pure Copper. Materials Science Forum, 2010, 636-637, 637-642.	0.3	2
30	Explosive welding. , 2021, , 207-237.		1
31	Recent Developments in Non-Conventional Welding of Materials. Materials, 2022, 15, 171.	1.3	1
32	Imaging characterization of friction stir welds in the AA 5182-H111 aluminium alloy. Microscopy and Microanalysis, 2009, 15, 81-82.	0.2	0
33	Grain size refinement of Copper DHP by Solid State Processing. Microscopy and Microanalysis, 2013, 19, 127-128.	0.2	0
34	Copper/Stainless Steel Friction Stir Spot Welds—Feasibility and Microstructural Analysis. , 0, , .		0