
Claude Husson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6773626/publications.pdf Version: 2024-02-01

CLAUDE HUSSON

#	Article	IF	CITATIONS
1	Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Canadian Journal of Plant Pathology, 2007, 29, 101-120.	0.8	159
2	Chalara fraxinea is an invasive pathogen in France. European Journal of Plant Pathology, 2011, 130, 311-324.	0.8	97
3	Predicting invasion success of forest pathogenic fungi from species traits. Journal of Applied Ecology, 2011, 48, 1381-1390.	1.9	89
4	An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Annals of Forest Science, 2016, 73, 45-67.	0.8	88
5	Occurrence of <i>Hymenoscyphus pseudoalbidus</i> on infected ash logs. Plant Pathology, 2012, 61, 889-895.	1.2	82
6	The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nature Ecology and Evolution, 2018, 2, 1000-1008.	3.4	82
7	Modeling climate impact on an emerging disease, the <i>Phytophthora alni</i> â€induced alder decline. Global Change Biology, 2014, 20, 3209-3221.	4.2	75
8	Rapid in planta detection of Chalara fraxinea by a real-time PCR assay using a dual-labelled probe. European Journal of Plant Pathology, 2009, 125, 329-335.	0.8	74
9	Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biological Invasions, 2010, 12, 157-172.	1.2	62
10	Comparison of Genetic and Virulence Diversity of Melampsora larici-populina Populations on Wild and Cultivated Poplar and Influence of the Alternate Host. Phytopathology, 2006, 96, 1027-1036.	1.1	53
11	Finding Single Copy Genes Out of Sequenced Genomes for Multilocus Phylogenetics in Non-Model Fungi. PLoS ONE, 2011, 6, e18803.	1.1	50
12	Partial Resistance to Melampsora larici-populina Leaf Rust in Hybrid Poplars: Genetic Variability in Inoculated Excised Leaf Disk Bioassay and Relationship with Complete Resistance. Phytopathology, 2003, 93, 421-427.	1.1	46
13	Strong Genetic Differentiation Between North American and European Populations of <i>Phytophthora alni</i> subsp. <i>uniformis</i> . Phytopathology, 2013, 103, 190-199.	1.1	42
14	SCAR–based PCR primers to detect the hybrid pathogen Phytophthora alni and its subspecies causing alder disease in Europe. European Journal of Plant Pathology, 2005, 112, 323-335.	0.8	40
15	Assessment of Passive Traps Combined with High-Throughput Sequencing To Study Airborne Fungal Communities. Applied and Environmental Microbiology, 2018, 84, .	1.4	39
16	Risk Factors for the Phytophthora-Induced Decline of Alder in Northeastern France. Phytopathology, 2007, 97, 99-105.	1.1	31
17	Wettability of Poplar Leaves Influences Dew Formation and Infection by Melampsora larici-populina. Plant Disease, 2006, 90, 177-184.	0.7	30
18	Usefulness of single copy genes containing introns in Phytophthora for the development of detection tools for the regulated species P. ramorum and P. fragariae. European Journal of Plant Pathology, 2006, 116, 171-176.	0.8	27

CLAUDE HUSSON

#	Article	IF	CITATIONS
19	Combining permanent aerobiological networks and molecular analyses for largeâ€scale surveillance of forest fungal pathogens: A proofâ€ofâ€concept. Plant Pathology, 2021, 70, 181-194.	1.2	19
20	A Statistical Model to Detect Asymptomatic Infectious Individuals with an Application in the <i>Phytophthora alni</i> Induced Alder Decline. Phytopathology, 2010, 100, 1262-1269.	1.1	17
21	Surprising low diversity of the plant pathogen <i>Phytophthora</i> in Amazonian forests. Environmental Microbiology, 2020, 22, 5019-5032.	1.8	17
22	Susceptibility of native French elm clones to Ophiostoma novo-ulmi. Annals of Forest Science, 2005, 62, 689-696.	0.8	15
23	Genetic diversity and genetic structure of black alder (Alnus glutinosa [L.] Gaertn) in the Belgium-Luxembourg-France cross-border area. Tree Genetics and Genomes, 2016, 12, 1.	0.6	15
24	Optimization of a real-time PCR assay for the detection of the quarantine pathogen Melampsora medusae f. sp. deltoidae. Fungal Biology, 2013, 117, 389-398.	1.1	10
25	Genetic Diversity and Origins of the Homoploid-Type Hybrid <i>Phytophthora ×alni</i> . Applied and Environmental Microbiology, 2016, 82, 7142-7153.	1.4	9
26	Comparison and validation of Oomycetes metabarcoding primers for Phytophthora high throughput sequencing. Journal of Plant Pathology, 2019, 101, 743-748.	0.6	9
27	Development and use of new sensitive molecular tools for diagnosis and detection of <i>Melampsora</i> rusts on cultivated poplar. Forest Pathology, 2013, 43, 1-11.	0.5	7