Fraser Buchanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6773584/publications.pdf

Version: 2024-02-01

394421 434195 38 981 19 31 citations h-index g-index papers 40 40 40 1390 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental characterisation on the behaviour of PLLA for stretch blowing moulding of bioresorbable vascular scaffolds. International Journal of Material Forming, 2021, 14, 375-389.	2.0	4
2	A comparison of the degradation behaviour of 3D printed PDLGA scaffolds incorporating bioglass or biosilica. Materials Science and Engineering C, 2021, 120, 111755.	7. 3	20
3	A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair. Journal of Materials Chemistry B, 2021, 9, 6728-6737.	5.8	22
4	Filament extrusion of bioresorbable PDLGA for additive manufacturing utilising diatom biosilica to inhibit process-induced thermal degradation. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104265.	3.1	4
5	Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. Materials Science and Engineering C, 2021, 124, 112016.	7.3	29
6	Evaluation of the in vitro cytotoxicity and modulation of the inflammatory response by the bioresorbable polymers poly(D,L-lactide-co-glycolide) and poly(L-lactide-co-glycolide). Acta Biomaterialia, 2021, 134, 261-275.	8.3	10
7	3D-printed patient-specific pelvis phantom for dosimetry measurements for prostate stereotactic radiotherapy with dominant intraprostatic lesion boost. Physica Medica, 2021, 92, 8-14.	0.7	8
8	Binder jetting additive manufacturing of hydroxyapatite powders: Effects of adhesives on geometrical accuracy and green compressive strength. Additive Manufacturing, 2020, 36, 101645.	3.0	16
9	Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production. Journal of Materials Science: Materials in Medicine, 2018, 29, 14.	3.6	5
10	A UV-Vis spectroscopic method for monitoring of additive particle properties during polymer compounding. Polymer Testing, 2018, 67, 392-398.	4.8	5
11	Low temperature gamma sterilization of a bioresorbable polymer, PLGA. Radiation Physics and Chemistry, 2018, 143, 27-32.	2.8	11
12	Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration. Marine Drugs, 2018, 16, 288.	4.6	14
13	Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Materials Science and Engineering C, 2018, 93, 975-986.	7. 3	34
14	Effects of poly ($\hat{l}\mu$ -caprolactone) coating on the properties of three-dimensional printed porous structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70, 68-83.	3.1	23
15	Surrogate Outcome Measures of In Vitro Osteoclast Resorption of \hat{l}^2 Tricalcium Phosphate. Advanced Healthcare Materials, 2017, 6, 1600947.	7.6	9
16	Biocompatibility of calcium phosphate bone cement with optimized mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 308-315.	3.4	26
17	Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study. Journal of Materials Science: Materials in Medicine, 2016, 27, 191.	3.6	21
18	Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. Journal of Materials Science: Materials in Medicine, 2016, 27, 22.	3.6	25

#	Article	IF	CITATIONS
19	Interlaboratory studies on in vitro test methods for estimating in vivo resorption of calcium phosphate ceramics. Acta Biomaterialia, 2015, 25, 347-355.	8.3	24
20	Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Materials Science and Engineering C, 2014, 38, 1-10.	7.3	203
21	Injectable calcium phosphate cements for spinal bone repair. , 2014, , 26-61.		10
22	Identification of a suitable sterilisation method for collagen derived from a marine Demosponge. International Journal of Nano and Biomaterials, 2012, 4, 148.	0.1	14
23	Hydrothermal synthesis of coccolith rich chalk to hydroxyapatite. International Journal of Nano and Biomaterials, 2012, 4, 81.	0.1	2
24	Development of a bovine collagen–apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomaterialia, 2012, 8, 4043-4052.	8.3	36
25	Designs from the deep: Marine organisms for bone tissue engineering. Biotechnology Advances, 2011, 29, 610-617.	11.7	80
26	Effect of Liquid/Powder Ratio on the Setting, Handling and Mechanical Properties of Collagen–Apatitic Cements. Key Engineering Materials, 2011, 493-494, 415-421.	0.4	3
27	Performance of calcium deficient hydroxyapatite–polyglycolic acid composites: an inÂvitro study. Journal of Materials Science: Materials in Medicine, 2010, 21, 2263-2270.	3.6	16
28	Sintering of biphasic calcium phosphates. Journal of Materials Science: Materials in Medicine, 2010, 21, 2271-2279.	3.6	40
29	Surface modification of poly(ε-caprolactone) using a dielectric barrier discharge in atmospheric pressure glow discharge mode. Acta Biomaterialia, 2009, 5, 2025-2032.	8.3	41
30	Application of a generic curriculum change management process to motivate and excite students. Engineering Education, 2008, 3, 37-44.	0.3	4
31	Short-fibre reinforcement of calcium phosphate bone cement. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2007, 221, 203-211.	1.8	36
32	The effect of patient gait on the material properties of UHMWPE in hip replacements. Biomaterials, 2005, 26, 4993-5001.	11.4	20
33	The influence of inert packaging on the shelf ageing of gamma-irradiation sterilised ultra-high molecular weight polyethylene. Biomaterials, 2003, 24, 139-145.	11.4	21
34	Analysis of variables influencing the accelerated ageing behaviour of ultra-high molecular weight polyethylene (UHMWPE). Polymer Testing, 2002, 21, 623-631.	4.8	24
35	Microabrasionâ€"a simple method to assess surface degradation of UHMWPE following sterilisation and ageing. Biomaterials, 2002, 23, 93-100.	11.4	28
36	The influence of gamma irradiation and aging on degradation mechanisms of ultra-high molecular weight polyethylene. Journal of Materials Science: Materials in Medicine, 2001, 12, 29-37.	3.6	46

3

#	Article	IF	CITATIONS
37	Influence of packaging conditions on the properties of gamma-irradiated UHMWPE following accelerated ageing and shelf ageing. Biomaterials, 1999, 20, 823-837.	11.4	40
38	Investigating Approaches for Three-Dimensional Printing of Hydroxyapatite Scaffolds for Bone Regeneration. Key Engineering Materials, 0, 631, 306-311.	0.4	7