
Fabrizio Fontana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6773169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Cancer Drug Resistance: Emerging Biomarkers and Promising Targets to Overcome Tumor Progression. Cancers, 2022, 14, 1614.	3.7	15
2	Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Letters, 2022, 534, 215619.	7.2	18
3	Exploiting the Metabolic Consequences of PTEN Loss and Akt/Hexokinase 2 Hyperactivation in Prostate Cancer: A New Role for δ-Tocotrienol. International Journal of Molecular Sciences, 2022, 23, 5269.	4.1	10
4	Melanoma Stem Cells Educate Neutrophils to Support Cancer Progression. Cancers, 2022, 14, 3391.	3.7	15
5	Aortic Gene Expression Profiles Show How ApoA-I Levels Modulate Inflammation, Lysosomal Activity, and Sphingolipid Metabolism in Murine Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 651-667.	2.4	12
6	Cancer Stem Cells—Key Players in Tumor Relapse. Cancers, 2021, 13, 376.	3.7	74
7	Extracellular Vesicles: Emerging Modulators of Cancer Drug Resistance. Cancers, 2021, 13, 749.	3.7	39
8	Ca2+ overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 277-292.	4.9	39
9	Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells, 2021, 10, 1133.	4.1	13
10	In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers, 2021, 13, 2970.	3.7	40
11	The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radical Biology and Medicine, 2021, 176, 203-221.	2.9	20
12	δâ€Tocotrienol sensitizes and reâ€sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPKâ€mediated apoptosis. Cell Proliferation, 2021, 54, e13111.	5.3	24
13	The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188338.	7.4	79
14	Mitochondrial functional and structural impairment is involved in the antitumor activity of δ-tocotrienol in prostate cancer cells. Free Radical Biology and Medicine, 2020, 160, 376-390.	2.9	17
15	Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. International Journal of Molecular Sciences, 2020, 21, 6806.	4.1	34
16	Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. International Journal of Molecular Sciences, 2020, 21, 9511.	4.1	23
17	Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells, 2020, 9, 460.	4.1	60
18	Role of exosomes in diagnosis and therapy of prostate cancer. I P Pavlov Russian Medical Biological Herald, 2020, 28, 399-405.	0.5	0

FABRIZIO FONTANA

#	Article	IF	CITATIONS
19	Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. Journal of Cellular Physiology, 2019, 234, 1147-1164.	4.1	45
20	Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Seminars in Cancer Biology, 2019, 59, 221-235.	9.6	39
21	Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Seminars in Cancer Biology, 2019, 59, 266-282.	9.6	23
22	Role of Endoplasmic Reticulum Stress in the Anticancer Activity of Natural Compounds. International Journal of Molecular Sciences, 2019, 20, 961.	4.1	93
23	Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 5-18.	1.6	19
24	δâ€Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Proliferation, 2019, 52, e12576.	5.3	69
25	Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells. Cells, 2019, 8, 143.	4.1	46
26	Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol. Scientific Reports, 2018, 8, 587.	3.3	46
27	Semi-preparative HPLC purification of Αtocotrienol (ΑT3) from <i>Elaeis guineensis</i> Jacq. and <i>Bixa orellana</i> L. and evaluation of its <i>in vitro</i> anticancer activity in human A375 melanoma cells. Natural Product Research, 2018, 32, 1130-1135.	1.8	24
28	Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death and Disease, 2018, 9, 889.	6.3	82
29	GnRH in the Human Female Reproductive Axis. Vitamins and Hormones, 2018, 107, 27-66.	1.7	39
30	Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility. Frontiers in Endocrinology, 2016, 7, 140.	3.5	57