Fabrizio Fontana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6773169/publications.pdf

Version: 2024-02-01

394421 477307 1,114 30 19 29 citations h-index g-index papers 30 30 30 1575 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Role of Endoplasmic Reticulum Stress in the Anticancer Activity of Natural Compounds. International Journal of Molecular Sciences, 2019, 20, 961.	4.1	93
2	Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death and Disease, 2018, 9, 889.	6.3	82
3	The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188338.	7.4	79
4	Cancer Stem Cellsâ€"Key Players in Tumor Relapse. Cancers, 2021, 13, 376.	3.7	74
5	δâ€Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Proliferation, 2019, 52, e12576.	5. 3	69
6	Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells, 2020, 9, 460.	4.1	60
7	Estrogen Receptor \hat{I}^2 in Melanoma: From Molecular Insights to Potential Clinical Utility. Frontiers in Endocrinology, 2016, 7, 140.	3 . 5	57
8	Targeting melanoma stem cells with the Vitamin E derivative \hat{l} -tocotrienol. Scientific Reports, 2018, 8, 587.	3.3	46
9	Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells. Cells, 2019, 8, 143.	4.1	46
10	Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. Journal of Cellular Physiology, 2019, 234, 1147-1164.	4.1	45
11	In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers, 2021, 13, 2970.	3.7	40
12	GnRH in the Human Female Reproductive Axis. Vitamins and Hormones, 2018, 107, 27-66.	1.7	39
13	Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Seminars in Cancer Biology, 2019, 59, 221-235.	9.6	39
14	Extracellular Vesicles: Emerging Modulators of Cancer Drug Resistance. Cancers, 2021, 13, 749.	3.7	39
15	Ca2+ overload- and ROS-associated mitochondrial dysfunction contributes to Î'-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 277-292.	4.9	39
16	Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. International Journal of Molecular Sciences, 2020, 21, 6806.	4.1	34
17	Semi-preparative HPLC purification of \hat{l} -tocotrienol (\hat{l} -T3) from <i>Elaeis guineensis</i> Jacq. and <i>Bixa orellana</i> L. and evaluation of its <i>in vitro</i> anticancer activity in human A375 melanoma cells. Natural Product Research, 2018, 32, 1130-1135.	1.8	24
18	Î'‶ocotrienol sensitizes and reâ€sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPKâ€mediated apoptosis. Cell Proliferation, 2021, 54, e13111.	5 . 3	24

#	Article	IF	CITATION
19	Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Seminars in Cancer Biology, 2019, 59, 266-282.	9.6	23
20	Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. International Journal of Molecular Sciences, 2020, 21, 9511.	4.1	23
21	The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radical Biology and Medicine, 2021, 176, 203-221.	2.9	20
22	Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 5-18.	1.6	19
23	Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Letters, 2022, 534, 215619.	7.2	18
24	Mitochondrial functional and structural impairment is involved in the antitumor activity of Î-tocotrienol in prostate cancer cells. Free Radical Biology and Medicine, 2020, 160, 376-390.	2.9	17
25	Molecular Mechanisms of Cancer Drug Resistance: Emerging Biomarkers and Promising Targets to Overcome Tumor Progression. Cancers, 2022, 14, 1614.	3.7	15
26	Melanoma Stem Cells Educate Neutrophils to Support Cancer Progression. Cancers, 2022, 14, 3391.	3.7	15
27	Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells, 2021, 10, 1133.	4.1	13
28	Aortic Gene Expression Profiles Show How ApoA-I Levels Modulate Inflammation, Lysosomal Activity, and Sphingolipid Metabolism in Murine Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 651-667.	2.4	12
29	Exploiting the Metabolic Consequences of PTEN Loss and Akt/Hexokinase 2 Hyperactivation in Prostate Cancer: A New Role for Î-Tocotrienol. International Journal of Molecular Sciences, 2022, 23, 5269.	4.1	10
30	Role of exosomes in diagnosis and therapy of prostate cancer. I P Pavlov Russian Medical Biological Herald, 2020, 28, 399-405.	0.5	0