Yuangang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6773128/publications.pdf

Version: 2024-02-01

60 papers

3,542 citations

147801 31 h-index 56 g-index

64 all docs 64 docs citations

64 times ranked 5361 citing authors

#	Article	IF	CITATIONS
1	Kinetic comparison of photocatalysis with H2O2-free photo-Fenton process on BiVO4 and the effective antibiotic degradation. Chemical Engineering Journal, 2022, 429, 132577.	12.7	51
2	Strong Dynamic Interfacial Adhesion by Polymeric Ionic Liquids under Extreme Conditions. ACS Nano, 2022, 16, 5303-5315.	14.6	19
3	One-Step Hydrothermal Synthesis of Sulfur Quantum Dots for Photoelectrochemical Catalysis for Dye Degradation. Journal of Electronic Materials, 2022, 51, 3092-3100.	2.2	3
4	Intelligent composite foam with reversible tunable superwettability for efficient and sustainable oil/water separation and high-concentration organic wastewater purification. Chemical Engineering Research and Design, 2021, 149, 144-157.	5.6	16
5	Synergistic Redox Reaction for Value-Added Organic Transformation via Dual-Functional Photocatalytic Systems. ACS Catalysis, 2021, 11, 4613-4632.	11.2	69
6	Endowing Phosphor Materials with Longâ€Afterglow Circularly Polarized Phosphorescence via Ball Milling. Advanced Optical Materials, 2021, 9, 2100452.	7.3	15
7	Composite of Cobalt ₃ N ₄ on TiO ₂ Nanorod Arrays as Coâ€catalyst for Enhanced Photoelectrochemical Water Splitting. ChemistrySelect, 2021, 6, 4319-4329.	1.5	9
8	Preparation of CdS@TiO2/Ni2P photocatalyst for value-added organic transformation coupling with enhanced hydrogen evolution. Jcis Open, 2021, 4, 100035.	3.2	3
9	Tuning Rheological Behaviors of Supramolecular Aqueous Gels via Charge Transfer Interactions. Langmuir, 2021, 37, 14713-14723.	3.5	5
10	H2O2-free photo-Fenton degradation of organic pollutants on thermally exfoliated g-C3N4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124190.	4.7	37
11	Layered Sulfur Nanosheets Prepared by Assembly of Sulfur Quantum Dots: Implications for Wide Optical Absorption and Multiwavelength Photoluminescence. ACS Applied Nano Materials, 2020, 3, 10749-10756.	5.0	22
12	Stable Layered Sulfur Nanosheets Prepared by One-Step Liquid-Phase Exfoliation of Natural Sublimed Sulfur with Bovine Serum Albumin for Photocatalysis. Chemistry of Materials, 2020, 32, 10476-10481.	6.7	18
13	Construction of 2D Bi2S3/CdS Nanosheet Arrays for Enhanced Photoelectrochemical Hydrogen Evolution. Journal of Electronic Materials, 2019, 48, 6397-6405.	2.2	8
14	Functionalized Superwettable Fabric with Switchable Wettability for Efficient Oily Wastewater Purification, in Situ Chemical Reaction System Separation, and Photocatalysis Degradation. ACS Applied Materials & Degradation. ACS Applied Materials & Degradation. ACS Applied Materials & Degradation.	8.0	58
15	Optically Active Upconverting Nanoparticles with Induced Circularly Polarized Luminescence and Enantioselectively Triggered Photopolymerization. ACS Nano, 2019, 13, 2804-2811.	14.6	114
16	Assembly of Copper Phthalocyanine on TiO2 Nanorod Arrays as Co-catalyst for Enhanced Photoelectrochemical Water Splitting. Frontiers in Chemistry, 2019, 7, 334.	3.6	14
17	($\langle i \rangle R \langle i \rangle$)-Binaphthyl derivatives as chiral dopants: substituent position controlled circularly polarized luminescence in liquid crystals. Chemical Communications, 2019, 55, 5914-5917.	4.1	65
18	Homochiral nanotubes from heterochiral lipid mixtures: a shorter alkyl chain dominated chiral self-assembly. Chemical Science, 2019, 10, 3873-3880.	7.4	14

#	Article	IF	Citations
19	Chiral Perovskite Nanocrystals: Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence (Adv. Mater. 12/2018). Advanced Materials, 2018, 30, 1870081.	21.0	8
20	Endowing Perovskite Nanocrystals with Circularly Polarized Luminescence. Advanced Materials, 2018, 30, e1705011.	21.0	213
21	Enhancing the electrochromic properties of polyaniline via coordinate bond tethering the polyaniline with gold colloids. Solar Energy Materials and Solar Cells, 2018, 177, 134-141.	6.2	39
22	Longâ€Persistent Circularly Polarized Phosphorescence from Chiral Organic Ionic Crystals. Chemistry - A European Journal, 2018, 24, 17444-17448.	3.3	64
23	Solventâ€Regulated Selfâ€Assembly of an Achiral Donor–Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification. Chemistry - A European Journal, 2017, 23, 8225-8231.	3.3	32
24	Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Science China Materials, 2017, 60, 295-303.	6.3	35
25	Facile Preparation of Porous WO3 Film for Photoelectrochemical Splitting of Natural Seawater. Journal of Electronic Materials, 2017, 46, 6878-6883.	2.2	10
26	Hierarchically branched Fe ₂ O ₃ @TiO ₂ nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Nanoscale, 2016, 8, 11284-11290.	5.6	87
27	Electrodeposited ternary iron-cobalt-nickel catalyst on nickel foam for efficient water electrolysis at high current density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 694-702.	4.7	34
28	Photoelectrochemical splitting of natural seawater with \hat{l}_{\pm} -Fe 2 O 3 /WO 3 nanorod arrays. International Journal of Hydrogen Energy, 2016, 41, 4096-4105.	7.1	72
29	Construction of inorganic–organic 2D/2D WO ₃ /g-C ₃ N ₄ nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater. Physical Chemistry Chemical Physics, 2016, 18, 10255-10261.	2.8	118
30	Configurable Resistive Switching between Memory and Threshold Characteristics for Proteinâ€Based Devices. Advanced Functional Materials, 2015, 25, 3825-3831.	14.9	175
31	Fabrication of inorganic–organic core–shell heterostructure: novel CdS@g-C ₃ N ₄ nanorod arrays for photoelectrochemical hydrogen evolution. RSC Advances, 2015, 5, 14074-14080.	3.6	71
32	Efficient and Stable Photoelectrochemical Seawater Splitting with $TiO2@g-C3N4 Nanorod Arrays Decorated by Co-Pi. Journal of Physical Chemistry C, 2015, 119, 20283-20292.$	3.1	161
33	Bioengineered Tunable Memristor Based on Protein Nanocage. Small, 2014, 10, 277-283.	10.0	66
34	Bioelectrocatalysis: Graphene Carrier for Magneto-Controllable Bioelectrocatalysis (Small 4/2014). Small, 2014, 10, 646-646.	10.0	0
35	Graphene Carrier for Magnetoâ€Controllable Bioelectrocatalysis. Small, 2014, 10, 647-652.	10.0	20
36	Optoelectronics of Organic Nanofibers Formed by Coâ€Assembly of Porphyrin and Perylenediimide. Small, 2014, 10, 2776-2781.	10.0	24

3

#	Article	IF	Citations
37	Artificial Skin: Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors (Small) Tj ETQq1 1 0	.784314 rg	BŢ /Overloc
38	A Synergistic Capture Strategy for Enhanced Detection and Elimination of Bacteria. Angewandte Chemie - International Edition, 2014, 53, 5837-5841.	13.8	136
39	Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small, 2014, 10, 3625-3631.	10.0	540
40	Innentitelbild: A Synergistic Capture Strategy for Enhanced Detection and Elimination of Bacteria (Angew. Chem. 23/2014). Angewandte Chemie, 2014, 126, 5822-5822.	2.0	0
41	Sericin for Resistance Switching Device with Multilevel Nonvolatile Memory. Advanced Materials, 2013, 25, 5498-5503.	21.0	219
42	Multiresponsive Chiroptical Switch of an Azobenzene-Containing Lipid: Solvent, Temperature, and Photoregulated Supramolecular Chirality. Journal of Physical Chemistry B, 2011, 115, 3322-3329.	2.6	129
43	Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels. Science China Chemistry, 2011, 54, 1051-1063.	8.2	26
44	A L-glutamic acid based low molecular weight organogel as a vehicle for controlled drug release. Scientia Sinica Chimica, 2011, 41, 1352-1358.	0.4	0
45	Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality. Science China Chemistry, 2010, 53, 432-437.	8.2	13
46	Selfâ€Assembled Ultralong Chiral Nanotubes and Tuning of Their Chirality Through the Mixing of Enantiomeric Components. Chemistry - A European Journal, 2010, 16, 8034-8040.	3.3	103
47	Fabrication of Carbon Fiber Embedded Carbon Aerogel via Supramolecular Assembly of Small Molecules in the Precursor Gel. Advanced Materials Research, 2010, 146-147, 1917-1920.	0.3	0
48	Gelation and self-assembly of glutamate bolaamphiphiles with hybrid linkers: effect of the aromatic ring and alkyl spacers. Soft Matter, 2009, 5, 1066.	2.7	45
49	Supramolecular Chiroptical Switches Based on Achiral Molecules. Advanced Materials, 2008, 20, 2908-2913.	21.0	53
50	Effect of Solvent and Molecular Structure on the Enhanced Fluorescence and Supramolecular Chirality of Schiff Bases in Organogels. Acta Physico-chimica Sinica, 2008, 24, 1535-1539.	0.6	11
51	Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel. Chemical Communications, 2008, , 5571.	4.1	67
52	Acidichromism and Supramolecular Chirality of Tetrakis(4-sulfonatophenyl)porphyrin in Organized Molecular Films. Journal of Physical Chemistry C, 2008, 112, 4861-4866.	3.1	21
53	Ultrasound induced formation of organogel from a glutamic dendron. Tetrahedron, 2007, 63, 7468-7473.	1.9	91
54	Induced chirality of supramolecular assemblies of some amphiphiles with \hat{I}^2 -cyclodextrin through the interaction at the air/water interface. Journal of Colloid and Interface Science, 2007, 306, 386-390.	9.4	13

Yuangang Li

#	Article	IF	CITATION
55	Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies. Soft Matter, 2007, 3, 1312.	2.7	134
56	Amino Acid Derivatives of Cholesterol as "Latent―Organogelators with Hydrogen Chloride as a Protonation Reagent. Langmuir, 2006, 22, 7016-7020.	3.5	74
57	Synthesis and Gelation Behavior of Cholesteryl Glycinate Anthraquinone-2-Carboxylamide and Cholesteryl Glycinate 9,10-Dimethyloxyl Anthracene-2-Carboxylamide. Journal of the Chinese Chemical Society, 2006, 53, 359-366.	1.4	10
58	Monomolecular Layers of Pyrene as a Sensor to Dicarboxylic Acids. Journal of Physical Chemistry B, 2004, 108, 1207-1213.	2.6	68
59	C, S & Samp; N-Doped TiO ₂ Photocatalyst Prepared by the Reverse-Microemulsion Method. Advanced Materials Research, 0, 148-149, 1007-1010.	0.3	O
60	Efficient and Long-term Photoelectrochemical Hydrogen Liberation from Hydrazine Hydrate on CdS Nanorod Arrays. Journal of Electronic Materials, 0, , 1.	2.2	2