
Alexander Vaskevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6772859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrathin Cold Island Films on Silanized Glass. Morphology and Optical Properties. Chemistry of Materials, 2004, 16, 3476-3483.	3.2	193
2	Nanoparticle Nanotubes. Angewandte Chemie - International Edition, 2003, 42, 5576-5579.	7.2	174
3	Sensitivity and Optimization of Localized Surface Plasmon Resonance Transducers. ACS Nano, 2011, 5, 748-760.	7.3	155
4	UV/Vis Spectroscopy of Metalloporphyrin and Metallophthalocyanine Monolayers Self-Assembled on Ultrathin Gold Films. Journal of Physical Chemistry B, 2000, 104, 8238-8244.	1.2	148
5	Controlled surface charging as a depth-profiling probe for mesoscopic layers. Nature, 2000, 406, 382-385.	13.7	143
6	Chemical Deposition of Cu ₂ O Nanocrystals with Precise Morphology Control. ACS Nano, 2014, 8, 162-174.	7.3	140
7	Silica-Stabilized Gold Island Films for Transmission Localized Surface Plasmon Sensing. Journal of the American Chemical Society, 2007, 129, 84-92.	6.6	136
8	Morphology and Refractive Index Sensitivity of Gold Island Films. Chemistry of Materials, 2009, 21, 5875-5885.	3.2	124
9	Tunable Localized Plasmon Transducers Prepared by Thermal Dewetting of Percolated Evaporated Gold Films. Journal of Physical Chemistry C, 2011, 115, 24642-24652.	1.5	114
10	Biological Sensing Using Transmission Surface Plasmon Resonance Spectroscopy. Langmuir, 2004, 20, 7365-7367.	1.6	109
11	Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films. Chemistry - A European Journal, 2002, 8, 3849-3857.	1.7	107
12	Coordination-Controlled Self-Assembled Multilayers on Gold. Journal of the American Chemical Society, 1998, 120, 13469-13477.	6.6	102
13	Coordination-Based Gold Nanoparticle Layers. Journal of the American Chemical Society, 2005, 127, 9207-9215.	6.6	100
14	Biological Sensing and Interface Design in Gold Island Film Based Localized Plasmon Transducers. Analytical Chemistry, 2008, 80, 7487-7498.	3.2	100
15	Highly Stable Localized Plasmon Transducers Obtained by Thermal Embedding of Gold Island Films on Glass. Advanced Materials, 2008, 20, 3893-3899.	11.1	98
16	Differential Plasmon Spectroscopy as a Tool for Monitoring Molecular Binding to Ultrathin Gold Films. Journal of the American Chemical Society, 2001, 123, 3177-3178.	6.6	92
17	Solid-State Thermal Dewetting of Just-Percolated Gold Films Evaporated on Glass: Development of the Morphology and Optical Properties. Journal of Physical Chemistry C, 2013, 117, 11337-11346.	1.5	88
18	Raman Spectroelectrochemistry of Molecules within Individual Electromagnetic Hot Spots. Journal of the American Chemical Society, 2009, 131, 14390-14398.	6.6	87

ALEXANDER VASKEVICH

#	Article	IF	CITATIONS
19	Optimization of Localized Surface Plasmon Resonance Transducers for Studying Carbohydrate–Protein Interactions. Analytical Chemistry, 2012, 84, 232-240.	3.2	83
20	Chemical Deposition and Stabilization of Plasmonic Copper Nanoparticle Films on Transparent Substrates. Chemistry of Materials, 2012, 24, 2501-2508.	3.2	83
21	Stabilization of Gold Nanoparticle Films on Glass by Thermal Embedding. ACS Applied Materials & Interfaces, 2011, 3, 978-987.	4.0	81
22	Template Synthesis of Nanotubes by Room-Temperature Coalescence of Metal Nanoparticles. Chemistry of Materials, 2005, 17, 3743-3748.	3.2	79
23	Branched Coordination Multilayers on Gold. Journal of the American Chemical Society, 2005, 127, 17877-17887.	6.6	72
24	Polymer-Coated Gold Island Films as Localized Plasmon Transducers for Gas Sensing. Journal of Physical Chemistry B, 2008, 112, 14530-14538.	1.2	64
25	Critical Issues in Localized Plasmon Sensing. Journal of Physical Chemistry C, 2014, 118, 8227-8244.	1.5	61
26	Widely-Applicable Gold Substrate for the Study of Ultrathin Overlayers. Journal of the American Chemical Society, 2004, 126, 5569-5576.	6.6	60
27	Sensitivity of Transmission Surface Plasmon Resonance (T-SPR) Spectroscopy: Self-Assembled Multilayers on Evaporated Gold Island Films. Chemistry - A European Journal, 2005, 11, 5555-5562.	1.7	59
28	Divergent Growth of Coordination Dendrimers on Surfaces. Journal of the American Chemical Society, 2006, 128, 8341-8349.	6.6	55
29	A new molecular switch: redox-driven translocation mechanism of the copper cationElectronic supplementary information (ESI) available: Fig. S1: cyclic voltammetry of CullLN2O2 in DMSO. See http://www.rsc.org/suppdata/cc/b2/b204145f/. Chemical Communications, 2002, , 1426-1427.	2.2	51
30	A Metal-Ion Coordinated Hybrid Multilayer. Langmuir, 2000, 16, 4420-4423.	1.6	48
31	Underpotential-overpotential transition of silver overlayer on platinum Part 1. Formation of a Pt + Ag surface alloy. Journal of Electroanalytical Chemistry, 1995, 383, 167-174.	1.9	47
32	Mechanism of morphology transformation during annealing of nanostructured gold films on glass. Physical Chemistry Chemical Physics, 2013, 15, 4656.	1.3	44
33	Protein–surface interactions: challenging experiments and computations. Journal of Molecular Recognition, 2010, 23, 259-262.	1.1	41
34	Thirdâ€Order Nonlinear Optical Response of Goldâ€Island Films. Advanced Functional Materials, 2008, 18, 1281-1289.	7.8	39
35	Layer-by-Layer Assembly of Ordinary and Composite Coordination Multilayers. Langmuir, 2004, 20, 10727-10733.	1.6	37
36	Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles. Nanoscale, 2017, 9, 12573-12589.	2.8	36

ALEXANDER VASKEVICH

#	Article	IF	CITATIONS
37	Preparation of Graded Materials by Laterally Controlled Template Synthesis. Journal of the American Chemical Society, 2003, 125, 4718-4719.	6.6	35
38	A Quantitative, Realâ€Time Assessment of Binding of Peptides and Proteins to Gold Surfaces. Chemistry - A European Journal, 2011, 17, 1327-1336.	1.7	35
39	Improved Sensitivity of Localized Surface Plasmon Resonance Transducers Using Reflection Measurements. Journal of Physical Chemistry Letters, 2011, 2, 1223-1226.	2.1	29
40	Template-Free Electroless Plating of Gold Nanowires: Direct Surface Functionalization with Shape-Selective Nanostructures for Electrochemical Applications. ACS Applied Materials & Interfaces, 2017, 9, 31142-31152.	4.0	29
41	Assembly of Coordination Nanostructures via Ligand Derivatization of Oxide Surfaces. Langmuir, 2006, 22, 2130-2135.	1.6	25
42	Nucleationâ€Controlled Solution Deposition of Silver Nanoplate Architectures for Facile Derivatization and Catalytic Applications. Advanced Materials, 2018, 30, e1805179.	11.1	23
43	Stabilization of Metal Nanoparticle Films on Glass Surfaces Using Ultrathin Silica Coating. Analytical Chemistry, 2013, 85, 10022-10027.	3.2	22
44	pHâ€Dependent Galvanic Replacement of Supported and Colloidal Cu ₂ O Nanocrystals with Gold and Palladium. Small, 2015, 11, 3942-3953.	5.2	22
45	Direct Observation of Aminoglycoside–RNA Binding by Localized Surface Plasmon Resonance Spectroscopy. Analytical Chemistry, 2013, 85, 2200-2207.	3.2	21
46	Versatile Scheme for the Step-by-Step Assembly of Nanoparticle Multilayers. Langmuir, 2011, 27, 1298-1307.	1.6	20
47	A General Kinetic-Optical Model for Solid-State Reactions Involving the Nano Kirkendall Effect. The Case of Copper Nanoparticle Oxidation. Journal of Physical Chemistry C, 2016, 120, 16140-16152.	1.5	19
48	Refractive Index Sensing Using Visible Electromagnetic Resonances of Supported Cu ₂ O Particles. ACS Applied Materials & Interfaces, 2017, 9, 8177-8186.	4.0	18
49	Irreversibly adsorbed silver on Pt(111) and transformation of the electrosorption behaviour induced by thermal annealing. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3777.	1.7	17
50	Rapid Formation of Coordination Multilayers Using Accelerated Self-Assembly Procedure (ASAP). Langmuir, 2010, 26, 7277-7284.	1.6	17
51	Phosphonate-stabilized silver nanoparticles: one-step synthesis and monolayer assembly. Journal of Materials Chemistry C, 2013, 1, 3573.	2.7	17
52	Empowering Electroless Plating to Produce Silver Nanoparticle Films for DNA Biosensing Using Localized Surface Plasmon Resonance Spectroscopy. ACS Applied Bio Materials, 2019, 2, 856-864.	2.3	17
53	Au–Pd Alloy Gradients Prepared by Laterally Controlled Template Synthesis. Advanced Functional Materials, 2006, 16, 693-698.	7.8	16
54	Expanding the boundaries of metal deposition: High aspect ratio silver nanoplatelets created by merging nanobelts. Electrochimica Acta, 2018, 264, 233-243.	2.6	16

ALEXANDER VASKEVICH

#	Article	IF	CITATIONS
55	Underpotential-overpotential transition in a silver overlayer on platinum. Part 2. reversible 2d–3d rearrangement. Journal of Electroanalytical Chemistry, 1996, 412, 117-123.	1.9	15
56	Underpotential–overpotential transition of a Ag overlayer on Pt:. Journal of Electroanalytical Chemistry, 1998, 442, 147-150.	1.9	14
57	Preparative Manipulation of Gold Nanoparticles by Reversible Binding to a Polymeric Solid Support. Chemistry - A European Journal, 2005, 11, 2836-2841.	1.7	13
58	Anodized Niobium Electrodes under Cathodic Polarization: Electrochemical and Optical Studies. Journal of the Electrochemical Society, 1995, 142, 1501-1508.	1.3	12
59	Underpotential deposition of copper in acetonitrile. Journal of Electroanalytical Chemistry, 2000, 491, 87-94.	1.9	12
60	Reversible Binding of Gold Nanoparticles to Polymeric Solid Supports. Chemistry of Materials, 2006, 18, 1247-1260.	3.2	12
61	Spectroscopic Characterization of Self-Assembled Macrocycle Monolayers on Gold. Reviews in Analytical Chemistry, 1999, 18, .	1.5	11
62	Underpotential Deposition of Nickel on {111}-Textured Gold Electrodes in Dimethyl Sulfoxide. Journal of the Electrochemical Society, 2005, 152, C744.	1.3	11
63	Improved blocking properties of short-chain alkanethiol monolayers self-assembled on gold. Israel Journal of Chemistry, 2005, 45, 337-344.	1.0	11
64	Laterally Controlled Template Electrodeposition of Polyaniline. Israel Journal of Chemistry, 2008, 48, 359-366.	1.0	11
65	Selfâ€Assembly of Nanostructures on Surfaces Using Metal–Organic Coordination. Israel Journal of Chemistry, 2010, 50, 333-346.	1.0	10
66	Localized Surface Plasmon Resonance (LSPR) Transducers Based on Random Evaporated Gold Island Films: Properties and Sensing Applications. , 2012, , 333-368.		10
67	Application of Surface Click Reactions to Localized Surface Plasmon Resonance (LSPR) Biosensing. Chemistry - A European Journal, 2017, 23, 10148-10155.	1.7	10
68	Oscillatory Behavior of the Long-Range Response of Localized Surface Plasmon Resonance Transducers. Journal of Physical Chemistry C, 2012, 116, 26865-26873.	1.5	9
69	Highly Sensitive Colorimetric Detection of Early Stage Aluminum Corrosion in Water Using Plasmonic Gold Nanoparticle Films. Advanced Optical Materials, 2018, 6, 1800599.	3.6	7
70	Glutathione Self-Assembles into a Shell of Hydrogen-Bonded Intermolecular Aggregates on "Naked― Silver Nanoparticles. Journal of Physical Chemistry B, 2021, 125, 895-906.	1.2	7
71	On the formation mechanism of metal nanoparticle nanotubes. Thin Solid Films, 2010, 518, 1661-1666.	0.8	6
72	Comparative assessment of the sensitivity of localized surface plasmon resonance transducers and interferenceâ€based Fabryâ€Pérot transducers. Annalen Der Physik, 2012, 524, 713-722.	0.9	6

#	Article	IF	CITATIONS
73	Mass Thickness Analysis of Cold Thin Films Using Room Temperature Gas-Phase Chlorination. Analytical Chemistry, 2009, 81, 2877-2883.	3.2	4
74	Improving the quality factors of plasmonic silver cavities for strong coupling with quantum emitters. Journal of Chemical Physics, 2021, 154, 014703.	1.2	4
75	Nanoparticle Nanotubes ChemInform, 2004, 35, no.	0.1	0
76	Morphological Control in Solution-Deposited Silver Nanoplatelet Films. ECS Meeting Abstracts, 2018, ,	0.0	0