Marc-Antoni Goulet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6772498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method. ACS Energy Letters, 2022, 7, 226-235.	17.4	35
2	In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nature Chemistry, 2022, 14, 1103-1109.	13.6	55
3	Molecular Engineering of an Alkaline Naphthoquinone Flow Battery. ACS Energy Letters, 2019, 4, 1880-1887.	17.4	90
4	A Long Lifetime Aqueous Organic Solar Flow Battery. Advanced Energy Materials, 2019, 9, 1900918.	19.5	31
5	A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density. ACS Energy Letters, 2019, 4, 1342-1348.	17.4	154
6	A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical. CheM, 2019, 5, 1861-1870.	11.7	196
7	A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery. Advanced Energy Materials, 2019, 9, 1900694.	19.5	97
8	Extending the Lifetime of Organic Flow Batteries via Redox State Management. Journal of the American Chemical Society, 2019, 141, 8014-8019.	13.7	151
9	A Phosphonateâ€Functionalized Quinone Redox Flow Battery at Nearâ€Neutral pH with Record Capacity Retention Rate. Advanced Energy Materials, 2019, 9, 1900039.	19.5	194
10	Alkaline Benzoquinone Aqueous Flow Battery for Largeâ€Scale Storage of Electrical Energy. Advanced Energy Materials, 2018, 8, 1702056.	19.5	161
11	Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule, 2018, 2, 1907-1908.	24.0	37
12	Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods. Journal of the Electrochemical Society, 2018, 165, A1466-A1477.	2.9	171
13	Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule, 2018, 2, 1894-1906.	24.0	293
14	Maximizing the power density of aqueous electrochemical flow cells with in operando deposition. Journal of Power Sources, 2017, 339, 80-85.	7.8	28
15	In Situ Enhancement of Flow-through Porous Electrodes with Carbon Nanotubes via Flowing Deposition. Electrochimica Acta, 2016, 206, 36-44.	5.2	21
16	In-situ characterization of symmetric dual-pass architecture of microfluidic co-laminar flow cells. Electrochimica Acta, 2016, 187, 277-285.	5.2	33
17	The importance of wetting in carbon paper electrodes for vanadium redox reactions. Carbon, 2016, 101, 390-398.	10.3	94
18	Decay in Mechanical Properties of Catalyst Coated Membranes Subjected to Combined Chemical and Mechanical Membrane Degradation. Fuel Cells, 2015, 15, 204-213.	2.4	66

Marc-Antoni Goulet

#	Article	IF	CITATIONS
19	Direct Formic Acid Microfluidic Fuel Cell with Pd Nanocubes Supported on Flow-Through Microporous Electrodes. ECS Electrochemistry Letters, 2015, 4, F24-F28.	1.9	17
20	Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes. Electrochemistry Communications, 2015, 57, 14-17.	4.7	40
21	Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current. Journal of the Electrochemical Society, 2015, 162, F639-F644.	2.9	24
22	Water sorption and expansion of an ionomer membrane constrained by fuel cell electrodes. Journal of Power Sources, 2015, 274, 94-100.	7.8	31
23	On the constitutive relations for catalyst coated membrane applied to in-situ fuel cell modeling. Journal of Power Sources, 2014, 252, 176-188.	7.8	57
24	Co-laminar flow cells for electrochemical energy conversion. Journal of Power Sources, 2014, 260, 186-196.	7.8	102
25	A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. Lab on A Chip, 2014, 14, 4596-4598.	6.0	61
26	Reactant recirculation in electrochemical co-laminar flow cells. Electrochimica Acta, 2014, 140, 217-224.	5.2	51
27	Microfluidic redox battery. Lab on A Chip, 2013, 13, 2504.	6.0	66
28	Mechanical properties of catalyst coated membranes for fuel cells. Journal of Power Sources, 2013, 234, 38-47.	7.8	58