Marc-Antoni Goulet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6772498/publications.pdf

Version: 2024-02-01

236925 477307 2,416 28 25 29 citations h-index g-index papers 30 30 30 1547 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule, 2018, 2, 1894-1906.	24.0	293
2	A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical. CheM, 2019, 5, 1861-1870.	11.7	196
3	A Phosphonateâ€Functionalized Quinone Redox Flow Battery at Nearâ€Neutral pH with Record Capacity Retention Rate. Advanced Energy Materials, 2019, 9, 1900039.	19.5	194
4	Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods. Journal of the Electrochemical Society, 2018, 165, A1466-A1477.	2.9	171
5	Alkaline Benzoquinone Aqueous Flow Battery for Largeâ€Scale Storage of Electrical Energy. Advanced Energy Materials, 2018, 8, 1702056.	19.5	161
6	A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density. ACS Energy Letters, 2019, 4, 1342-1348.	17.4	154
7	Extending the Lifetime of Organic Flow Batteries via Redox State Management. Journal of the American Chemical Society, 2019, 141, 8014-8019.	13.7	151
8	Co-laminar flow cells for electrochemical energy conversion. Journal of Power Sources, 2014, 260, 186-196.	7.8	102
9	A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery. Advanced Energy Materials, 2019, 9, 1900694.	19.5	97
10	The importance of wetting in carbon paper electrodes for vanadium redox reactions. Carbon, 2016, 101, 390-398.	10.3	94
11	Molecular Engineering of an Alkaline Naphthoquinone Flow Battery. ACS Energy Letters, 2019, 4, 1880-1887.	17.4	90
12	Microfluidic redox battery. Lab on A Chip, 2013, 13, 2504.	6.0	66
13	Decay in Mechanical Properties of Catalyst Coated Membranes Subjected to Combined Chemical and Mechanical Membrane Degradation. Fuel Cells, 2015, 15, 204-213.	2.4	66
14	A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. Lab on A Chip, 2014, 14, 4596-4598.	6.0	61
15	Mechanical properties of catalyst coated membranes for fuel cells. Journal of Power Sources, 2013, 234, 38-47.	7.8	58
16	On the constitutive relations for catalyst coated membrane applied to in-situ fuel cell modeling. Journal of Power Sources, 2014, 252, 176-188.	7.8	57
17	In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nature Chemistry, 2022, 14, 1103-1109.	13.6	55
18	Reactant recirculation in electrochemical co-laminar flow cells. Electrochimica Acta, 2014, 140, 217-224.	5.2	51

#	Article	IF	CITATION
19	Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes. Electrochemistry Communications, 2015, 57, 14-17.	4.7	40
20	Alkaline Quinone Flow Battery with Long Lifetime at pH 12. Joule, 2018, 2, 1907-1908.	24.0	37
21	Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method. ACS Energy Letters, 2022, 7, 226-235.	17.4	35
22	In-situ characterization of symmetric dual-pass architecture of microfluidic co-laminar flow cells. Electrochimica Acta, 2016, 187, 277-285.	5.2	33
23	Water sorption and expansion of an ionomer membrane constrained by fuel cell electrodes. Journal of Power Sources, 2015, 274, 94-100.	7.8	31
24	A Long Lifetime Aqueous Organic Solar Flow Battery. Advanced Energy Materials, 2019, 9, 1900918.	19.5	31
25	Maximizing the power density of aqueous electrochemical flow cells with in operando deposition. Journal of Power Sources, 2017, 339, 80-85.	7.8	28
26	Microfluidic Electrochemical Cell Array in Series: Effect of Shunt Current. Journal of the Electrochemical Society, 2015, 162, F639-F644.	2.9	24
27	In Situ Enhancement of Flow-through Porous Electrodes with Carbon Nanotubes via Flowing Deposition. Electrochimica Acta, 2016, 206, 36-44.	5. 2	21
28	Direct Formic Acid Microfluidic Fuel Cell with Pd Nanocubes Supported on Flow-Through Microporous Electrodes. ECS Electrochemistry Letters, 2015, 4, F24-F28.	1.9	17