Sarah C Calaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6771765/publications.pdf Version: 2024-02-01

SARAH C CALACHAN

#	Article	IF	CITATIONS
1	Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nature Communications, 2017, 8, 350.	5.8	197
2	NaV1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H+ efflux in caveolae. Oncogene, 2011, 30, 2070-2076.	2.6	171
3	The role of calcium in the response of cardiac muscle to stretch. Progress in Biophysics and Molecular Biology, 1999, 71, 59-90.	1.4	114
4	Substrate recognition by the cell surface palmitoyl transferase DHHC5. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17534-17539.	3.3	108
5	Caveolae Act as Membrane Reserves Which Limit Mechanosensitive ICl,swell Channel Activation during Swelling in the Rat Ventricular Myocyte. PLoS ONE, 2009, 4, e8312.	1.1	95
6	Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. Journal of Molecular and Cellular Cardiology, 2012, 52, 366-375.	0.9	88
7	Activation of Na+-H+exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. Journal of Physiology, 2004, 559, 205-214.	1.3	83
8	Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. Journal of Molecular and Cellular Cardiology, 2012, 52, 388-400.	0.9	80
9	Caveolae modulate excitation–contraction coupling and β2-adrenergic signalling in adult rat ventricular myocytes. Cardiovascular Research, 2006, 69, 816-824.	1.8	79
10	Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. Journal of Molecular and Cellular Cardiology, 2008, 45, 88-92.	0.9	78
11	Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle?. Progress in Biophysics and Molecular Biology, 2003, 82, 81-95.	1.4	75
12	Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Progress in Biophysics and Molecular Biology, 2004, 84, 29-59.	1.4	72
13	Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2011, 50, 500-509.	0.9	67
14	Effect of the microtubule polymerizing agent taxol on contraction, Ca2+transient and L-type Ca2+current in rat ventricular myocytes. Journal of Physiology, 1999, 516, 409-419.	1.3	65
15	Regulation of the cardiac sodium pump. Cellular and Molecular Life Sciences, 2013, 70, 1357-1380.	2.4	61
16	Store-operated Ca2+ Entry in Malignant Hyperthermia-susceptible Human Skeletal Muscle. Journal of Biological Chemistry, 2010, 285, 25645-25653.	1.6	60
17	Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after CellÂlsolation. Biophysical Journal, 2017, 113, 1047-1059.	0.2	49
18	The Cellular Basis for Enhanced Volume-modulated Cardiac Output in Fish Hearts. Journal of General Physiology, 2006, 128, 37-44.	0.9	46

SARAH C CALAGHAN

#	Article	IF	CITATIONS
19	A role for Câ€protein in the regulation of contraction and intracellular Ca 2+ in intact rat ventricular myocytes. Journal of Physiology, 2000, 528, 151-156.	1.3	41
20	Contribution of angiotensin II, endothelin 1 and the endothelium to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Archiv European Journal of Physiology, 2001, 441, 514-520.	1.3	40
21	Co-ordinated changes in cAMP, phosphorylated phospholamban, Ca 2+ and contraction following β-adrenergic stimulation of rat heart. Pflugers Archiv European Journal of Physiology, 1998, 436, 948-956.	1.3	39
22	The Golgi apparatus is a functionally distinct Ca ²⁺ store regulated by the PKA and Epac branches of the β ₁ -adrenergic signaling pathway. Science Signaling, 2015, 8, ra101.	1.6	32
23	A Mechanism for Statin-Induced Susceptibility to Myopathy. JACC Basic To Translational Science, 2019, 4, 509-523.	1.9	31
24	A Separate Pool of Cardiac Phospholemman That Does Not Regulate or Associate with the Sodium Pump. Journal of Biological Chemistry, 2013, 288, 13808-13820.	1.6	29
25	Cyclic AMP but not phosphorylation of phospholamban contributes to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Archiv European Journal of Physiology, 1999, 437, 780-782.	1.3	28
26	Identification of Caveolar Resident Proteins in Ventricular Myocytes Using a Quantitative Proteomic Approach: Dynamic Changes in Caveolar Composition Following Adrenoceptor Activation. Molecular and Cellular Proteomics, 2015, 14, 596-608.	2.5	25
27	Beta1-adrenoceptor antagonist, metoprolol attenuates cardiac myocyte Ca2+ handling dysfunction in rats with pulmonary artery hypertension. Journal of Molecular and Cellular Cardiology, 2018, 120, 74-83.	0.9	25
28	Voluntary exercise delays heart failure onset in rats with pulmonary artery hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H421-H424.	1.5	24
29	Transmural variations in gene expression of stretch-modulated proteins in the rat left ventricle. Pflugers Archiv European Journal of Physiology, 2007, 454, 545-549.	1.3	22
30	Cytochalasin D reduces Ca 2+ sensitivity and maximum tension via interactions with myofilaments in skinned rat cardiac myocytes. Journal of Physiology, 2000, 529, 405-411.	1.3	21
31	Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1963-H1971.	1.5	20
32	Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect. PLoS ONE, 2014, 9, e106905.	1.1	20
33	Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS ONE, 2015, 10, e0144309.	1.1	19
34	Stable microtubules contribute to cardiac dysfunction in the streptozotocin-induced model of type 1 diabetes in the rat. Molecular and Cellular Biochemistry, 2007, 294, 173-180.	1.4	16
35	Simvastatin activates single skeletal RyR1 channels but exerts more complex regulation of the cardiac RyR2 isoform. British Journal of Pharmacology, 2018, 175, 938-952.	2.7	16
36	Cardiac microtubules are more resistant to chemical depolymerisation in streptozotocin-induced diabetes in the rat. Pflugers Archiv European Journal of Physiology, 2002, 444, 432-437.	1.3	15

SARAH C CALAGHAN

#	Article	IF	CITATIONS
37	Heterologous expression of wild-type and mutant Â-cardiac myosin changes the contractile kinetics of cultured mouse myotubes. Journal of Physiology, 2003, 548, 167-174.	1.3	14
38	Preservation of thein VivoPhosphorylation Status of Phospholamban in the Heart: Evidence for a Site-Specific Difference in the Dephosphorylation of Phospholamban. Biochemical and Biophysical Research Communications, 1998, 248, 701-705.	1.0	10
39	A Unifying Mechanism for the Role of Microtubules in the Regulation of [Ca 2+] i and Contraction in the Cardiac Myocyte. Circulation Research, 2001, 89, .	2.0	6
40	Caveolae and the cardiac myocyte. Current Opinion in Physiology, 2018, 1, 59-67.	0.9	5
41	Compartmentalized signaling in cardiomyocyte lipid domains—Do structure and function match up?. Journal of Molecular and Cellular Cardiology, 2006, 41, 1-3.	0.9	4
42	Simvastatin Promotes Cardiac Myocyte Relaxation in Association with Phosphorylation of Troponin I. Frontiers in Pharmacology, 2017, 8, 203.	1.6	4
43	A novel approach to the Langendorff technique: preparation of isolated cardiomyocytes and myocardial samples from the same rat heart. Experimental Physiology, 2013, 98, 1295-1300.	0.9	3
44	In Vivo Simvastatin Treatment Differentially Affects Caveolin-1 and Caveolin-3 Expression in the Adult Rat Myocardium. Biophysical Journal, 2012, 102, 138a.	0.2	2
45	Local signalling in myocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 295-297.	0.9	1
46	Statin Induced Myopathy: A Role for Mitochondrial Ca2+ and No in Enhanced Sarcoplasmic Reticulum Ca2+ Leak. Biophysical Journal, 2015, 108, 567a.	0.2	1
47	Caveolae. , 2008, , 267-289.		0
48	A Novel Pleiotropic Effect of Statins: Enhanced Cardiomyocyte β2-Adrenoceptor Responsiveness. Biophysical Journal, 2010, 98, 721a.	0.2	0
49	Simvastatin Activates Single Skeletal RyR1 Channels but Exerts More Complex Regulation of the Cardiac Isoform, RyR2. Biophysical Journal, 2016, 110, 266a.	0.2	0
50	Metoprolol Reverses β-Adrenergic Remodeling in the Failing Right Ventricle of Pulmonary Artery Hypertensive (PAH) Rats. Biophysical Journal, 2016, 110, 89a-90a.	0.2	0
51	Simvastatin has Profound Effects on Sarcoplasmic Reticulum Ca2+ Leak in Skeletal but not Cardiac Muscle: A Mechanism for Myopathy. Biophysical Journal, 2016, 110, 266a.	0.2	0
52	Editorial: Cardiomyocyte Microdomains: An Emerging Concept of Local Regulation and Remodeling. Frontiers in Physiology, 2020, 11, 512.	1.3	0