Yizhong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/677121/publications.pdf Version: 2024-02-01

VIZHONC CHEN

#	Article	IF	CITATIONS
1	Energy information flow-based ecological risk transmission among communities within the heavy metals contaminated soil system. Chemosphere, 2022, 287, 132124.	8.2	4
2	Spatial-temporal collaborative relation among ecological footprint depth/size and economic development in Chengyu urban agglomeration. Science of the Total Environment, 2022, 812, 151510.	8.0	14
3	Integrating water-related disaster and environment risks for evaluating spatial–temporal dynamics of water security in urban agglomeration. Environmental Science and Pollution Research, 2022, 29, 58240-58262.	5.3	4
4	Multi-criteria decision making and fairness evaluation of water ecological carrying capacity for inter-regional green development. Environmental Science and Pollution Research, 2021, 28, 6470-6490.	5.3	11
5	Multi-Level Decision-Making for Inter-Regional Water Resources Management with Water Footprint Analysis and Shared Socioeconomic Pathways. Water Resources Management, 2021, 35, 481-503.	3.9	4
6	Fairness analysis and compensation strategy in the Triangle of Central China driven by water-carbon-ecological footprints. Environmental Science and Pollution Research, 2021, 28, 58502-58522.	5.3	6
7	Analysis of water–carbon–ecological footprints and resource–environment pressure in the Triangle of Central China. Ecological Indicators, 2021, 125, 107448.	6.3	35
8	A system-scale environmental risk analysis with considering a conceptual conversion from material/energy flow to information flow under uncertainties. Journal of Environmental Management, 2021, 300, 113775.	7.8	1
9	Spatial distribution of heavy metal contamination and uncertainty-based human health risk in the aquatic environment using multivariate statistical method. Environmental Science and Pollution Research, 2021, 28, 22804-22822.	5.3	12
10	Tradeoffs in water and carbon footprints of shale gas, natural gas, and coal in China. Fuel, 2020, 263, 116778.	6.4	25
11	Tradeoffs in cost competitiveness and emission reduction within microgrid sustainable development considering price-based demand response. Science of the Total Environment, 2020, 703, 135545.	8.0	10
12	Impact of unconventional natural gas development on regional water resources and market supply in China from the perspective of game analysis. Energy Policy, 2020, 145, 111750.	8.8	13
13	Effects of land use cover change on carbon emissions and ecosystem services in Chengyu urban agglomeration, China. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1197-1215.	4.0	44
14	Planning for Regional Water System Sustainability Through Water Resources Security Assessment Under Uncertainties. Water Resources Management, 2018, 32, 3135-3153.	3.9	17
15	Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. Science of the Total Environment, 2018, 627, 1585-1601.	8.0	107
16	Optimal groundwater security management policies by control of inexact health risks under dual uncertainty in slope factors. Chemosphere, 2018, 198, 161-173.	8.2	16
17	Synergistic management of flowback and produced waters during the upstream shale gas operations driven by non-cooperative stakeholders. Journal of Natural Gas Science and Engineering, 2018, 52, 591-608.	4.4	14
18	Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Computers and Chemical Engineering, 2018, 109, 216-235.	3.8	144

YIZHONG CHEN

#	Article	IF	CITATIONS
19	Optimal water resource management for sustainable development of the chemical industrial park under multi-uncertainty and multi-pollutant control. Environmental Science and Pollution Research, 2018, 25, 27245-27259.	5.3	16
20	Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China. Renewable and Sustainable Energy Reviews, 2018, 93, 631-641.	16.4	96
21	Energy-environmental implications of shale gas extraction with considering a stochastic decentralized structure. Fuel, 2018, 230, 226-243.	6.4	12
22	Synthesis and characterization of starch- <i>g</i> -Poly(acrylic acid)/Organo-Zeolite 4A superabsorbent composites with respect to their water-holding capacities and nutrient-release behavior. Polymer Composites, 2017, 38, 1838-1848.	4.6	31
23	Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Conversion and Management, 2017, 134, 382-398.	9.2	196
24	A leader-follower-interactive method for regional water resources management with considering multiple water demands and eco-environmental constraints. Journal of Hydrology, 2017, 548, 121-134.	5.4	62
25	Stochastic dominant-subordinate-interactive scheduling optimization for interconnected microgrids with considering wind-photovoltaic-based distributed generations under uncertainty. Energy, 2017, 130, 581-598.	8.8	34
26	A bilevel groundwater management model with minimization of stochastic health risks at the leader level and remediation cost at the follower level. Stochastic Environmental Research and Risk Assessment, 2017, 31, 2547-2571.	4.0	22
27	Human health risk constrained naphthalene-contaminated groundwater remediation management through an improved credibility method. Environmental Science and Pollution Research, 2017, 24, 16120-16136.	5.3	10
28	Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews, 2017, 71, 388-403.	16.4	304
29	A cloud model based multi-attribute decision making approach for selection and evaluation of groundwater management schemes. Journal of Hydrology, 2017, 555, 881-893.	5.4	57
30	Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure. Waste Management and Research, 2017, 35, 874-889.	3.9	5
31	A credibility-based chance-constrained optimization model for integrated agricultural and water resources management: A case study in South Central China. Journal of Hydrology, 2016, 537, 408-418.	5.4	31
32	An inexact bi-level simulation–optimization model for conjunctive regional renewable energy planning and air pollution control for electric power generation systems. Applied Energy, 2016, 183, 969-983.	10.1	46
33	Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. Journal of Hydrology, 2016, 540, 412-422.	5.4	106
34	Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China. Renewable and Sustainable Energy Reviews, 2016, 65, 356-372.	16.4	59
35	Swelling Properties and Environmental Responsiveness of Superabsorbent Composite Based on Starch-G-Poly Acrylic Acid/Organo-Zeolite. Journal of Macromolecular Science - Physics, 2016, 55, 662-679.	1.0	10
36	Monte Carlo-based interval transformation analysis for multi-criteria decision analysis of groundwater management strategies under uncertain naphthalene concentrations and health risks. Journal of Hydrology, 2016, 539, 468-477.	5.4	42

#	Article	IF	CITATIONS
37	Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Frontiers of Chemical Science and Engineering, 2016, 10, 147-161.	4.4	50
38	Bi-Level Decision-Making Approach for GHG Emissions Control and Municipal Solid Waste Management under Parameter Uncertainty: A Case Study in Beijing, China. Polish Journal of Environmental Studies, 2016, 25, 1435-1451.	1.2	6