
Francesco Crea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6771166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indole-3-acetic acid correlates with monocyte-to-high-density lipoprotein (HDL) ratio (MHR) in chronic kidney disease patients. International Urology and Nephrology, 2022, 54, 2355-2364.	0.6	2
2	Environmental behaviour of a pesticide metabolite, the AMPA. Sequestration of Ca2+, Mg2+, Cu2+, Zn2+ and Al3+. Chemosphere, 2022, 306, 135535.	4.2	1
3	FUNCTIONALIZED HALLOYSITE NANOTUBES FOR ENHANCED REMOVAL OF Hg2+ IONS FROM AQUEOUS SOLUTIONS. Clays and Clay Minerals, 2021, 69, 117-127.	0.6	5
4	Behavior of Antibacterial Ofloxacin; Hydronation Constants and Solubility in Aqueous Solutions of Sodium Chloride at Different Temperatures. Journal of Solution Chemistry, 2021, 50, 1236-1257.	0.6	1
5	The Solution Behavior of Dopamine in the Presence of Mono and Divalent Cations: A Thermodynamic Investigation in Different Experimental Conditions. Biomolecules, 2021, 11, 1312.	1.8	4
6	Bifunctional 3-Hydroxy-4-Pyridinones as Potential Selective Iron(III) Chelators: Solution Studies and Comparison with Other Metals of Biological and Environmental Relevance. Molecules, 2021, 26, 7280.	1.7	3
7	The Effect of Metal Cations on the Aqueous Behavior of Dopamine. Thermodynamic Investigation of the Binary and Ternary Interactions with Cd2+, Cu2+ and UO22+ in NaCl at Different Ionic Strengths and Temperatures. Molecules, 2021, 26, 7679.	1.7	3
8	Complexation of environmentally and biologically relevant metals with bifunctional 3-hydroxy-4-pyridinones. Journal of Molecular Liquids, 2020, 319, 114349.	2.3	15
9	Nature as Resource. Thermodynamic characterization of natural and synthetic polymers and their sequestering ability towards some bivalent metal cations. Journal of Chemical Thermodynamics, 2020, 150, 106205.	1.0	1
10	Thermodynamic Behavior of Polyalcohols and Speciation Studies in the Presence of Divalent Metal Cations. Journal of Chemical & Engineering Data, 2020, 65, 2805-2812.	1.0	3
11	Special Issue "Chemical Speciation of Organic and Inorganic Components of Environmental and Biological Interest in Natural Fluids: Behaviour, Interaction and Sequestration― Molecules, 2020, 25, 826.	1.7	1
12	8-Hydroxyquinoline-2-Carboxylic Acid as Possible Molybdophore: A Multi-Technique Approach to Define Its Chemical Speciation, Coordination and Sequestering Ability in Aqueous Solution. Biomolecules, 2020, 10, 930.	1.8	4
13	Understanding the Solution Behavior of Epinephrine in the Presence of Toxic Cations: A Thermodynamic Investigation in Different Experimental Conditions. Molecules, 2020, 25, 511.	1.7	14
14	RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. International Urology and Nephrology, 2020, 52, 1125-1133.	0.6	14
15	A new bis-(3-hydroxy-4-pyridinone)-DTPA-derivative: Synthesis, complexation of di-/tri-valent metal cations and in vivo M3+ sequestering ability. Journal of Molecular Liquids, 2019, 281, 280-294.	2.3	14
16	Speciation Studies of Bifunctional 3-Hydroxy-4-Pyridinone Ligands in the Presence of Zn2+ at Different Ionic Strengths and Temperatures. Molecules, 2019, 24, 4084.	1.7	14
17	Characterization of the thermodynamic properties of some benzenepolycarboxylic acids: Acid-base properties, weak complexes, total and neutral species solubility, solubility products in NaClaq, (CH3)4NClaq and Synthetic Sea Water (SSW). Fluid Phase Equilibria, 2019, 480, 41-52.	1.4	1
18	Phytate–molybdate(<scp>vi</scp>) interactions in NaCl _(aq) at different ionic strengths: unusual behaviour of the protonated species. New Journal of Chemistry, 2018, 42, 7671-7679	1.4	4

#	Article	lF	CITATIONS
19	New bis-(3-hydroxy-4-pyridinone)-NTA-derivative: Synthesis, binding ability towards Ca2+, Cu2+, Zn2+, Al3+, Fe3+ and biological assays. Journal of Molecular Liquids, 2018, 272, 609-624.	2.3	12
20	Use of Gantrez Copolymers as Potential Chelating Agent for the Selective Sequestration of Metal Ions. Studies of the Interactions in Aqueous Solution at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2018, 63, 4193-4204.	1.0	4
21	Biochar from byproduct to high value added material – A new adsorbent for toxic metal ions removal from aqueous solutions. Journal of Molecular Liquids, 2018, 271, 481-489.	2.3	23
22	Bifunctional 3-hydroxy-4-pyridinones as effective aluminium chelators: synthesis, solution equilibrium studies and in vivo evaluation. Journal of Inorganic Biochemistry, 2018, 186, 116-129.	1.5	13
23	Potentiometric, UV and 1 H NMR study on the interaction of penicillin derivatives with Zn(II) in aqueous solution. Biophysical Chemistry, 2017, 223, 1-10.	1.5	12
24	Thermodynamic Parameters for the Interaction of Amoxicillin and Ampicillin with Magnesium in NaCl Aqueous Solution, at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 1018-1027.	1.0	9
25	Thermodynamic Properties of O-Donor Polyelectrolytes: Determination of the Acid–Base and Complexing Parameters in Different Ionic Media at Different Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 2676-2688.	1.0	14
26	Potentiometric, UV and 1 H NMR study on the interaction of Cu 2+ with ampicillin and amoxicillin in aqueous solution. Biophysical Chemistry, 2017, 224, 59-66.	1.5	11
27	Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations. Journal of Molecular Liquids, 2017, 229, 15-26.	2.3	19
28	Sequestration of Aluminium(III) by different natural and synthetic organic and inorganic ligands in aqueous solution. Chemosphere, 2017, 186, 535-545.	4.2	24
29	Potential Antibacterial Activity of Marine Macroalgae against Pathogens Relevant for Aquaculture and Human Health. Journal of Pure and Applied Microbiology, 2017, 11, 1695-1706.	0.3	29
30	Polycarboxylic acids in sea water: acid–base properties, solubilities, activity coefficients, and complex formation constants at different salinities. Monatshefte Für Chemie, 2016, 147, 1481-1505.	0.9	1
31	Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution. Metal Ions in Life Sciences, 2016, 16, 133-166.	2.8	18
32	Modelling the Hydrolysis of Mixed Mono-, Di- and Trimethyltin(IV) Complexes in Aqueous Solutions. Journal of Solution Chemistry, 2015, 44, 1611-1625.	0.6	1
33	SALMO and S ₃ M: A Saliva Model and a Single Saliva Salt Model for Equilibrium Studies. Bioinorganic Chemistry and Applications, 2015, 2015, 1-12.	1.8	16
34	Thermodynamics of Zn2+ 2-mercaptopyridine-N-oxide and 2-hydroxypyridine-N-oxide interactions: Stability, solubility, activity coefficients and medium effects. Journal of Molecular Liquids, 2015, 211, 876-884.	2.3	3
35	Zinc(II) complexes with hydroxocarboxylates and mixed metal species with tin(II) in different salts aqueous solutions at different ionic strengths: formation, stability, and weak interactions with supporting electrolytes. Monatshefte FÃ1⁄4r Chemie, 2015, 146, 527-540.	0.9	15
36	Solubility and modeling acid–base properties of adrenaline in NaCl aqueous solutions at different ionic strengths and temperatures. European Journal of Pharmaceutical Sciences, 2015, 78, 37-46.	1.9	14

#	Article	IF	CITATIONS
37	Biomimetic complexes of divalent cobalt and zinc with N-heterocyclic dicarboxylic ligands. Thermochimica Acta, 2014, 580, 7-12.	1.2	31
38	Thermodynamic data for Pb ²⁺ and Zn ²⁺ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths. New Journal of Chemistry, 2014, 38, 3973-3983.	1.4	39
39	Acidâ \in "Base Properties and Alkali and Alkaline Earth Metal Complex Formation in Aqueous Solution of Diethylenetriamine- <i>N</i> , <i>N<td>1.8</td><td>28</td></i>	1.8	28
40	Thermodynamics of proton binding and weak (Clâ^', Na+ and K+) species formation, and activity coefficients of 1,2-dimethyl-3-hydroxypyridin-4-one (deferiprone). Journal of Chemical Thermodynamics, 2014, 77, 98-106.	1.0	30
41	Chelating Agents for the Sequestration of Mercury(II) and Monomethyl Mercury(II). Current Medicinal Chemistry, 2014, 21, 3819-3836.	1.2	74
42	Speciation of tin(II) in aqueous solution: thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatshefte Für Chemie, 2013, 144, 761-772.	0.9	24
43	Thermodynamic study of the non covalent interactions of phytate with xanthine derivatives and histamine in aqueous solution. Journal of Molecular Liquids, 2013, 178, 37-43.	2.3	6
44	Supramolecular Assemblies Based on Complexes of Nonionic Amphiphilic Cyclodextrins and a <i>meso</i> -Tetra(4-sulfonatophenyl)porphine Tributyltin(IV) Derivative: Potential Nanotherapeutics against Melanoma. Biomacromolecules, 2013, 14, 3820-3829.	2.6	35
45	Thermodynamic Properties of Dopamine in Aqueous Solution. Acid–Base Properties, Distribution, and Activity Coefficients in NaCl Aqueous Solutions at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2013, 58, 2835-2847.	1.0	41
46	Nickel and copper biomimetic complexes with N-heterocyclic dicarboxylic ligands. Thermochimica Acta, 2013, 573, 101-105.	1.2	10
47	Speciation of Cadmium in the Environment. Metal lons in Life Sciences, 2013, 11, 63-83.	2.8	22
48	Potentiometric and spectrophotometric characterization of the UO ₂ ²⁺ -citrate complexes in aqueous solution, at different concentrations, ionic strengths and supporting electrolytes. Radiochimica Acta, 2012, 100, 13-28.	0.5	20
49	Quantitative Study of the Interaction between ATP and Aromatic Amines in Aqueous Solution. Journal of Solution Chemistry, 2012, 41, 1240-1253.	0.6	3
50	Protonation Constants, Activity Coefficients, and Chloride Ion Pair Formation of Some Aromatic Amino-Compounds in NaCl _{aq} (0 mol·kg ^{–1} ≤i>I ≤3 mol·kg ^{–1<i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2012, 57, 1851-1859.}	1 p.x) at	13
51	The inorganic speciation of tin(II) in aqueous solution. Geochimica Et Cosmochimica Acta, 2012, 87, 1-20.	1.6	63
52	Modeling solubility, acid–base properties and activity coefficients of amoxicillin, ampicillin and (+)6-aminopenicillanic acid, in NaCl(aq) at different ionic strengths and temperatures. European Journal of Pharmaceutical Sciences, 2012, 47, 661-677.	1.9	33
53	Modeling the acid–base properties of glutathione in different ionic media, with particular reference to natural waters and biological fluids. Amino Acids, 2012, 43, 629-648.	1.2	40
54	Advances in the investigation of dioxouranium(VI) complexes of interest for natural fluids. Coordination Chemistry Reviews, 2012, 256, 63-81.	9.5	74

#	Article	IF	CITATIONS
55	Some thermodynamic properties of dl-Tyrosine and dl-Tryptophan. Effect of the ionic medium, ionic strength and temperature on the solubility and acid–base properties. Fluid Phase Equilibria, 2012, 314, 185-197.	1.4	32
56	Quantitative study on the interaction of Sn2+ and Zn2+ with some phosphate ligands, in aqueous solution at different ionic strengths. Journal of Molecular Liquids, 2012, 165, 143-153.	2.3	24
57	Thermodynamics of binary and ternary interactions in the tin(II)/phytate system in aqueous solutions, in the presence of Clâ^ or Fâ^'. Journal of Chemical Thermodynamics, 2012, 51, 88-96.	1.0	22
58	Thermodynamic data for lanthanoid(III) sequestration by phytate at different temperatures. Monatshefte Für Chemie, 2010, 141, 511-520.	0.9	17
59	Solubility and acid–base properties of concentrated phytate in self-medium and in NaClaq at T=298.15K. Journal of Chemical Thermodynamics, 2010, 42, 1393-1399.	1.0	30
60	Sequestration of some biogenic amines and poly(allyl)amine by high molecular weight polycarboxylic ligands in aqueous solution. Journal of Molecular Liquids, 2010, 151, 138-144.	2.3	7
61	Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry, 2010, 122, 1047-1054.	4.2	224
62	Electrochemical Study on the Stability of Phytate Complexes with Cu ²⁺ , Pb ²⁺ , Zn ²⁺ , and Ni ²⁺ : A Comparison of Different Techniques. Journal of Chemical & Engineering Data, 2010, 55, 4757-4767.	1.0	40
63	Interactions of Dioxouranium(VI) with Polyamines in Aqueous Solution. Journal of Chemical & Engineering Data, 2010, 55, 3044-3050.	1.0	5
64	Speciation of Phytate Ion in Aqueous Solution. Thermodynamic Parameters for Zinc(II) Sequestration at Different Ionic Strengths and Temperatures. Journal of Solution Chemistry, 2009, 38, 115-134.	0.6	30
65	Sequestering Ability of Dicarboxylic Ligands Towards Dioxouranium(VI) in NaCl and KNO3 Aqueous Solutions at T=298.15ÂK. Journal of Solution Chemistry, 2009, 38, 1343-1356.	0.6	12
66	Solubility and acid-base properties and activity coefficients of chitosan in different ionic media and at different ionic strengths, at T=25°C. Journal of Molecular Liquids, 2009, 148, 120-126.	2.3	33
67	Acidâ~'Base Properties of Synthetic and Natural Polyelectrolytes: Experimental Results and Models for the Dependence on Different Aqueous Media. Journal of Chemical & Engineering Data, 2009, 54, 589-605.	1.0	42
68	Mixing Effects on the Protonation of Polycarboxylates. Protonation of Benzenehexacarboxylate in LiClâ^KCl, NaClâ^KCl, NaClâ^LiCl, and LiClâ^CsCl Aqueous Solutions at <i>I</i> = 1 mol·L ^{â^1} and <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data, 2009, 54, 2137-2139.	1.0	5
69	Medium Effect on the Acidâ^'Base Properties of Branched Polyethylenimine in Different Aqueous Electrolyte Solutions. Journal of Chemical & Engineering Data, 2009, 54, 502-510.	1.0	6
70	The Effect of Different Aqueous Ionic Media on the Acid-Base Properties of Some Open Chain Polyamines. Journal of Solution Chemistry, 2008, 37, 183-201.	0.6	35
71	Mixing effects on the protonation of polyacrylate in LiCl/KCl aqueous solutions at different ionic strengths, I=1 to 3.5Âmol Lâ^'1, at T=298.15ÂK. Journal of Molecular Liquids, 2008, 143, 129-133.	2.3	21
72	Adsorption of nutrients and cadmium by different minerals: Experimental studies and modelling. Journal of Environmental Management, 2008, 88, 890-898.	3.8	23

#	Article	IF	CITATIONS
73	Sequestering ability of phytate towards protonated BPEI and other polyammonium cations in aqueous solution. Biophysical Chemistry, 2008, 136, 108-114.	1.5	15
74	Solubility and activity coefficients of acidic and basic non-electrolytes in aqueous salt solutions. Fluid Phase Equilibria, 2008, 263, 43-54.	1.4	40
75	Solubility and activity coefficients of 2,2′-bipyridyl, 1,10-phenanthroline and 2,2′,6′,2″-terpyridine in NaCl(aq) at different ionic strengths and T=298.15K. Fluid Phase Equilibria, 2008, 272, 47-52.	1.4	24
76	Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews, 2008, 252, 1108-1120.	9.5	180
77	Speciation of phytate ion in aqueous solution. Protonation in CsClaq at different ionic strengths and mixing effects in LiClaq+CsClaq. Journal of Molecular Liquids, 2008, 138, 76-83.	2.3	18
78	Sequestering ability of polycarboxylic ligands towards dioxouranium(VI). Talanta, 2008, 75, 775-785.	2.9	27
79	Solubility and Acid–Base Properties of Ethylenediaminetetraacetic Acid in Aqueous NaCl Solution at 0 ≤i>I ≤ mol·kg ^{â^'1} and <i>T</i> = 298.15 K. Journal of Chemical & Engineering Data 2008, 53, 363-367.	ı ,1. 0	32
80	Dioxouranium(VI)–carboxylate complexesA calorimetric and potentiometric investigation of interaction with oxalate at infinite dilution and in NaCl aqueous solution at I=1.0molLâ^'1 and T=25°C. Talanta, 2007, 71, 948-963.	2.9	30
81	Mixing effects on the protonation of some polycarboxylates in NaClaq+KClaq at different ionic strengths. Talanta, 2007, 72, 1059-1065.	2.9	7
82	SIT Parameters for the Dependence of (Poly)carboxylate Activity Coefficients on Ionic Strength in (C ₂ H ₄) ₄ NI _{aq} (0 ≤i>I ≤.2 mol·kg ⁻¹) and (CH ₃) ₄ NCl _{aq} (0 ≤i>I ≤.9 mol·kg ⁻¹) in the Temperature Range 278 K ≤i>T ≤28 K and Correlation with Pitzer Parameters. Journal of Chemical & amp; Engineering Data, 2007, 52, 2195-2203.	1.0	16
83	Thermodynamic Study for the Protonation of Branched Poly(ethylenimine) in NaCl(aq) and Its Dependence on Ionic Strength. Journal of Chemical & Engineering Data, 2007, 52, 279-285.	1.0	16
84	Sit Parameters for 1:2 Electrolytes and Correlation with Pitzer Coefficients. Annali Di Chimica, 2007, 97, 85-95.	0.6	20
85	Dioxouranium(VI)-Carboxylate Complexes. Speciation of UO22+-1,2,3-Propanetricarboxylate System in NaClaq at Different Ionic Strengths and at T = 25 °C. Annali Di Chimica, 2007, 97, 163-175.	0.6	7
86	Speciation of Phytate Ion in Aqueous Solution. Trimethyltin(IV) Interactions in Self Medium. Annali Di Chimica, 2007, 97, 635-645.	0.6	2
87	Dipyridinocalixcrown/diiodoperfluorocarbon binary host systems for CsI: structural studies and fluorous phase extraction of caesium. Tetrahedron, 2007, 63, 4951-4958.	1.0	40
88	Dioxouranium(VI)-Carboxylate Complexes. Interaction of \$\${m OU}_{2}^{2+}\$\$ with 1,2,3,4,5,6-Benzenehexacarboxylate (Mellitate) in 0 ≤(NaCl a q) ≤1.0Âmol·L â^'1. Journal of Solution Chemistry, 2007, 36, 479-496.	0.6	11
89	Solubility and Activity Coefficients of Acidic and Basic Nonelectrolytes in Aqueous Salt Solutions. 2. Solubility and Activity Coefficients of Suberic, Azelaic, and Sebacic Acids in NaCl(aq), (CH3)4NCl(aq), and (C2H5)4Nl(aq) at Different Ionic Strengths and att= 25 ŰC. Journal of Chemical & Engineering Data, 2006, 51, 1660-1667.	1.0	61
90	Protonation of carbonate in aqueous tetraalkylammonium salts at 25°C. Talanta, 2006, 68, 1102-1112.	2.9	57

#	Article	IF	CITATIONS
91	Modelling of natural and synthetic polyelectrolyte interactions in natural waters by using SIT, Pitzer and Ion Pairing approaches. Marine Chemistry, 2006, 99, 93-105.	0.9	32
92	Dioxouranium(VI) – Carboxylate Complexes. Interaction with Dicarboxylic Acids in Alqueous Solution: Speciation and Structure. Annali Di Chimica, 2006, 96, 399-420.	0.6	19
93	Interaction of acrylic-maleic copolymers with H+, Na+, Mg2+ and Ca2+: Thermodynamic parameters and their dependence on medium. Reactive and Functional Polymers, 2005, 65, 329-342.	2.0	22
94	The Protonation of Polyacrylate in Seawater. Analysis of Concentration Effects. Annali Di Chimica, 2005, 95, 643-656.	0.6	6
95	Enhancement of Hydrolysis through the Formation of Mixed Hetero-Metal Species: Dioxouranium(VI) - Cadmium(II) Mixtures. Annali Di Chimica, 2005, 95, 767-778.	0.6	27
96	Chromatographic Behavior of Open-Chain Polyamines NH2-(CH2)2-[NH-(CH2)2]n-NH2 and Their Quantitative Determination in Sea Water by High-Performance Ion-Exchange Chromatography. Journal of Chromatographic Science, 2005, 43, 342-347.	0.7	2
97	Enhancement of hydrolysis through the formation of mixed hetero-metal species. Talanta, 2005, 65, 229-238.	2.9	34
98	Solubility and Activity Coefficients of Acidic and Basic Nonelectrolytes in Aqueous Salt Solutions. 1. Solubility and Activity Coefficients ofo-Phthalic Acid andl-Cystine in NaCl(aq), (CH3)4NCl(aq), and (C2H5)4NI(aq) at Different Ionic Strengths and att= 25 °C. Journal of Chemical & Engineering Data, 2005, 50, 1761-1767.	1.0	38
99	The Retention of Some Open-Chain Diamines on a Strong Cation-Exchange Resin in Ion Chromatography. Journal of Chromatographic Science, 2004, 42, 161-166.	0.7	3
100	Medium and Alkyl Chain Effects on the Protonation of Dicarboxylates in NaCl(aq)and Et4NI(aq)at 25°C. Journal of Solution Chemistry, 2004, 33, 499-528.	0.6	28
101	Dissociation Constants for Citric Acid in NaCl and KCl Solutions and their Mixtures at 25 °C. Journal of Solution Chemistry, 2004, 33, 1349-1366.	0.6	13
102	Hydrolysis of dioxouranium(VI): a calorimetric study in NaClaq and NaClO4aq, at 25°C. Thermochimica Acta, 2004, 414, 185-189.	1.2	11
103	Ionic Strength Dependence of Protonation Constants ofN-Alkyl Substituted Open Chain Diamines in NaClaq. Journal of Chemical & Engineering Data, 2004, 49, 109-115.	1.0	29
104	Binding of Phosphate, Pyrophosphate, and Hexacyanoferrate(II) by FullyN-Methyl Substituted Polyammonium Cations in Aqueous Solution. Journal of Chemical & Engineering Data, 2004, 49, 133-137.	1.0	5
105	Thermodynamic Parameters for the Protonation of Poly(allylamine) in Concentrated LiCl(aq) and NaCl(aq). Journal of Chemical & Engineering Data, 2004, 49, 658-663.	1.0	24
106	Chemical speciation of organic matter in natural waters. Interaction of nucleotide 5' mono-, di- and triphosphates with major components of seawater. Chemical Speciation and Bioavailability, 2004, 16, 1-8.	2.0	7
107	Speciation of phytate ion in aqueous solution. Characterisation of Ca-phytate sparingly soluble species. Chemical Speciation and Bioavailability, 2004, 16, 53-59.	2.0	27
108	Evaluation of behaviour of linear monoamines CH3–(CH2)nâ^1–NH2 (n=1–6) in ion chromatography. Analytica Chimica Acta, 2003, 477, 41-48.	2.6	2

#	Article	IF	CITATIONS
109	The formation of sparingly soluble species of Ca2+ with carboxylic ligands: speciation and thermoanalysis. Talanta, 2003, 61, 611-620.	2.9	10
110	Speciation of poly-amino carboxylic compounds in seawater. Chemical Speciation and Bioavailability, 2003, 15, 75-86.	2.0	18
111	Dioxouranium-carboxylate complexes. Formation and stability of acetate species at different ionic strengths in NaCl(aq). Annali Di Chimica, 2003, 93, 1027-35.	0.6	6
112	Binding of acrylic and sulphonic polyanions by open-chain polyammonium cations. Talanta, 2001, 53, 1241-1248.	2.9	14
113	Modelling the separation of amines by high performance liquid chromatography. Analytica Chimica Acta, 2001, 436, 333-342.	2.6	3