Li Li Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6771149/publications.pdf

Version: 2024-02-01

26630 22832 112 26,704 112 56 citations h-index g-index papers 116 116 116 26004 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009, 38, 2520.	38.1	6,276
2	Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 2010, 22, 1392-1401.	6.7	2,060
3	Graphene-Wrapped Fe ₃ O ₄ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials, 2010, 22, 5306-5313.	6.7	1,773
4	Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 5983.	6.7	1,338
5	Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced Science, 2018, 5, 1700322.	11.2	1,043
6	Nanoporous Ni(OH) ₂ Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano, 2013, 7, 6237-6243.	14.6	1,019
7	Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Letters, 2012, 12, 1806-1812.	9.1	852
8	MnO ₂ -based nanostructures for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21380-21423.	10.3	817
9	Capacitance of carbon-based electrical double-layer capacitors. Nature Communications, 2014, 5, 3317.	12.8	600
10	High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy and Environmental Science, 2014, 7, 3709-3719.	30.8	557
11	Generation of B-Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications. ACS Nano, 2013, 7, 19-26.	14.6	532
12	Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chemical Communications, 2010, 46, 6099.	4.1	518
13	Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO ₂ for High-Performance Asymmetric Supercapacitors. ACS Nano, 2018, 12, 1033-1042.	14.6	436
14	Layered Graphene Oxide Nanostructures with Sandwiched Conducting Polymers as Supercapacitor Electrodes. Langmuir, 2010, 26, 17624-17628.	3.5	386
15	Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters, 2012, 12, 2446-2451.	9.1	382
16	Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy and Environmental Science, 2012, 5, 9618.	30.8	376
17	Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. Journal of Power Sources, 2014, 252, 98-106.	7.8	354
18	A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film. Nano Letters, 2014, 14, 7180-7187.	9.1	346

#	Article	IF	Citations
19	Incorporation of Manganese Dioxide within Ultraporous Activated Graphene for High-Performance Electrochemical Capacitors. ACS Nano, 2012, 6, 5404-5412.	14.6	345
20	Grapheneâ€Encapsulated Si on Ultrathinâ€Graphite Foam as Anode for High Capacity Lithiumâ€ion Batteries. Advanced Materials, 2013, 25, 4673-4677.	21.0	320
21	Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from â^'50 to 80°C. Nano Energy, 2013, 2, 403-411.	16.0	314
22	Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 3878.	3.3	285
23	Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Letters, 2012, 12, 5679-5683.	9.1	283
24	Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 7302.	6.7	262
25	Pillaring Chemically Exfoliated Graphene Oxide with Carbon Nanotubes for Photocatalytic Degradation of Dyes under Visible Light Irradiation. ACS Nano, 2010, 4, 7030-7036.	14.6	243
26	Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy, 2013, 2, 764-768.	16.0	211
27	Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn–Air Battery and Selfâ€Driven Water Splitting. Advanced Energy Materials, 2020, 10, 2002896.	19.5	210
28	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	30.8	205
29	Large area CVD growth of graphene. Synthetic Metals, 2015, 210, 95-108.	3.9	182
30	Mesoporous carbon nanospheres with an excellent electrocapacitive performance. Journal of Materials Chemistry, 2011, 21, 2274-2281.	6.7	169
31	Hierarchical Cu ₂ O/CuO/Co ₃ O ₄ core-shell nanowires: synthesis and electrochemical properties. Nanotechnology, 2015, 26, 304002.	2.6	167
32	Advanced porous carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 9395.	10.3	156
33	Enhancement of Electrochemical Performance of Macroporous Carbon by Surface Coating of Polyaniline. Chemistry of Materials, 2010, 22, 1195-1202.	6.7	154
34	Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2015, 277, 36-43.	7.8	154
35	Manganese oxide–carbon composite as supercapacitor electrode materials. Microporous and Mesoporous Materials, 2009, 123, 260-267.	4.4	150
36	Template Synthesis of Tubular Ruthenium Oxides for Supercapacitor Applications. Journal of Physical Chemistry C, 2010, 114, 13608-13613.	3.1	144

#	Article	IF	CITATIONS
37	Sulfurized activated carbon for high energy density supercapacitors. Journal of Power Sources, 2014, 252, 90-97.	7.8	135
38	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	19.5	133
39	Improving Polysulfides Adsorption and Redox Kinetics by the Co ₄ N Nanoparticle/Nâ€Doped Carbon Composites for Lithiumâ€Sulfur Batteries. Small, 2019, 15, e1901454.	10.0	130
40	Two-dimensional SnS ₂ @PANI nanoplates with high capacity and excellent stability for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3659-3666.	10.3	126
41	Aqueous Rechargeable Alkaline Co _{<i>x</i>} Ni _{2–<i>x</i>} S ₂ /TiO ₂ Battery. ACS Nano, 2016, 10, 1007-1016.	14.6	123
42	<i>In Situ</i> Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode. ACS Nano, 2015, 9, 8609-8616.	14.6	116
43	A composite electrode consisting of nickel hydroxide, carbon nanotubes, andÂreduced graphene oxide with an ultrahigh electrocapacitance. Journal of Power Sources, 2013, 222, 326-332.	7.8	109
44	Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 340-374.	8.0	92
45	Pyrolyzed graphene oxide/resorcinol-formaldehyde resin composites as high-performance supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 2663.	6.7	87
46	Preparation of activated graphene and effect of activation parameters on electrochemical capacitance. Carbon, 2012, 50, 3482-3485.	10.3	87
47	Visibleâ€Lightâ€Induced Dye Degradation over Copperâ€Modified Reduced Graphene Oxide. Chemistry - A European Journal, 2011, 17, 2428-2434.	3.3	84
48	Double‧helled Phosphorus and Nitrogen Codoped Carbon Nanospheres as Efficient Polysulfide Mediator for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1800621.	11.2	83
49	Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Materials, 2015, 1, 119-126.	18.0	82
50	Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO ₂ Electrocatalytic Reduction. ACS Nano, 2022, 16, 2110-2119.	14.6	82
51	Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chemical Engineering Journal, 2020, 395, 124057.	12.7	77
52	Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor. Journal of Power Sources, 2018, 393, 169-176.	7.8	76
53	Rigid three-dimensional Ni ₃ S ₄ nanosheet frames: controlled synthesis and their enhanced electrochemical performance. RSC Advances, 2015, 5, 8422-8426.	3.6	70
54	Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors. Nanomaterials, 2016, 6, 18.	4.1	65

#	Article	lF	CITATIONS
55	Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. Journal of Power Sources, 2020, 448, 227398.	7.8	58
56	Recent progress in hierarchically structured O2-cathodes for Li-O2 batteries. Chemical Engineering Journal, 2018, 352, 972-995.	12.7	57
57	Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4 (M=Fe, Mn, Co) Tj ETQq1 1	0.784314 16.0	rgBT /Over
58	Rational Design of Porous MnO2 Tubular Arrays via Facile and Templated Method for High Performance Supercapacitors. Electrochimica Acta, 2015, 154, 329-337.	5.2	56
59	Few-Layered Trigonal WS ₂ Nanosheet-Coated Graphite Foam as an Efficient Free-Standing Electrode for a Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30591-30598.	8.0	56
60	Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density. Journal of Power Sources, 2013, 236, 215-223.	7.8	44
61	Mechanism studies of LiFePO ₄ cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction. RSC Advances, 2014, 4, 54576-54602.	3.6	44
62	High Electrochemical Performance of LiFePO4 Cathode Material via In-Situ Microwave Exfoliated Graphene Oxide. Electrochimica Acta, 2015, 151, 240-248.	5.2	42
63	Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. Journal of Power Sources, 2020, 470, 228356.	7.8	42
64	Liquid-Solid-Solution Assembly of CoFe 2 O 4 /Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode. Electrochimica Acta, 2016, 215, 247-252.	5.2	41
65	Controllable synthesis of MnO ₂ nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm, 2018, 20, 1690-1697.	2.6	38
66	Rational design of polyaniline/MnO ₂ /carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Advances, 2015, 5, 66311-66317.	3.6	36
67	Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. Journal of Materials Chemistry A, 2015, 3, 22043-22052.	10.3	36
68	N-doped carbon sheets arrays embedded with CoP nanoparticles as high-performance cathode for Li-S batteries via triple synergistic effects. Journal of Power Sources, 2020, 455, 227959.	7.8	34
69	Bimetallic ruthenium–copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst. Nanoscale, 2013, 5, 11044.	5.6	32
70	Low-Charge-Carrier-Scattering Three-Dimensional $\hat{l}\pm$ -MnO ₂ / \hat{l}^2 -MnO ₂ Networks for Ultra-High-Rate Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1051-1059.	5.1	30
71	Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites. Physical Chemistry Chemical Physics, 2016, 18, 23746-23754.	2.8	29
72	A Review on the Promising Plasma-Assisted Preparation of Electrocatalysts. Nanomaterials, 2019, 9, 1436.	4.1	29

#	Article	IF	Citations
73	A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion. New Carbon Materials, 2021, 36, 350-372.	6.1	29
74	Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2836-2840.	4.9	28
75	Controllable seeding of single crystal graphene islands from graphene oxide flakes. Carbon, 2014, 79, 406-412.	10.3	27
76	Cobalt sulfide nanoflakes grown on graphite foam for Na-ion batteries with ultrahigh initial coulombic efficiency. Journal of Materials Chemistry A, 2020, 8, 14900-14907.	10.3	27
77	Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites. Catalysis Science and Technology, 2017, 7, 6101-6111.	4.1	26
78	Template-free method for fabricating carbon nanotube combined with thin N-doped porous carbon composite for supercapacitor. Journal of Materials Science, 2019, 54, 6451-6460.	3.7	25
79	Substrate Engineering for CVD Growth of Single Crystal Graphene. Small Methods, 2021, 5, e2001213.	8.6	25
80	N-Doped Mesoporous Carbon Sheets/Hollow Carbon Spheres Composite for Supercapacitors. Langmuir, 2018, 34, 15665-15673.	3.5	24
81	Lotus root-like porous carbon for potassium ion battery with high stability and rate performance. Journal of Power Sources, 2020, 466, 228303.	7.8	22
82	Sulfonic-acid-functionalized porous benzene phenol polymer and carbon for catalytic esterification of methanol with acetic acid. Catalysis Today, 2011, 166, 53-59.	4.4	21
83	Selection of graphene dopants for Na3V2(PO4)3 graphene composite as high rate, ultra long-life sodium-ion battery cathodes. Electrochimica Acta, 2019, 306, 558-567.	5.2	21
84	Enhanced rate capability of a lithium ion battery anode based on liquid–solid-solution assembly of Fe ₂ O ₃ on crumpled graphene. RSC Advances, 2016, 6, 9007-9012.	3.6	20
85	Effective Oxygen Reduction Reaction Performance of FeCo Alloys In Situ Anchored on Nitrogen-Doped Carbon by the Microwave-Assistant Carbon Bath Method and Subsequent Plasma Etching. Nanomaterials, 2019, 9, 1284.	4.1	19
86	Photocatalytic degradation of cationic and anionic organic pollutants in water via Fe-g-C3N4/CF as a macroscopic photo-Fenton catalyst under visible light irradiation. Journal of Environmental Chemical Engineering, 2020, 8, 104219.	6.7	19
87	Simultaneous Immobilization and Conversion of Polysulfides on Co ₃ O ₄ –CoN Heterostructured Mediators toward High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 2570-2578.	5.1	18
88	Graphene-supported non-precious metal electrocatalysts for oxygen reduction reactions: the active center and catalytic mechanism. Journal of Materials Chemistry A, 2016, 4, 7148-7154.	10.3	17
89	Nitrogen and Sulfur Coâ€Doped Grapheneâ€Like Carbon from Industrial Dye Wastewater for Use as a Highâ€Performance Supercapacitor Electrode. Global Challenges, 2019, 3, 1900043.	3.6	17
90	Porous Carbon Nanosheets Prepared from Plastic Wastes for Supercapacitors. Journal of Electronic Materials, 2018, 47, 5816-5824.	2.2	16

#	Article	IF	CITATIONS
91	Fe ₃ O ₄ /Fe ₃ C@Nitrogenâ€Doped Carbon for Enhancing Oxygen Reduction Reaction. ChemNanoMat, 2019, 5, 187-193.	2.8	15
92	Fe modified mesoporous hollow carbon spheres for selective oxidation of ethylbenzene. Science China Materials, 2017, 60, 1227-1233.	6.3	14
93	A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application. Applied Surface Science, 2019, 496, 143704.	6.1	13
94	Conversion of waste plastic into ordered mesoporous carbon for electrochemical applications. Journal of Materials Research, 2019, 34, 941-949.	2.6	12
95	Fabrication of mesoporous gold networks@MnO2 for high-performance supercapacitors. Gold Bulletin, 2017, 50, 61-68.	2.4	10
96	Waste chrysanthemum tea derived hierarchically porous carbon for CO2 capture. Journal of Renewable and Sustainable Energy, 2017, 9, 064901.	2.0	10
97	Solution-based production of graphene nano-platelets containing extremely low amounts of heteroatoms. Solid State Sciences, 2013, 25, 1-5.	3.2	9
98	Synthesis of mesoporous tubular carbon using natural tubular Halloysite as template for supercapacitor. Journal of Materials Science: Materials in Electronics, 2018, 29, 12187-12194.	2.2	9
99	High efficient oxygen reduction performance of Fe/Fe3C nanoparticles in situ encapsulated in nitrogen-doped carbon via a novel microwave-assisted carbon bath method. Nano Materials Science, 2019, 1, 131-136.	8.8	9
100	Enhanced photoelectrochemical performance of ZnO/NiFe-layered double hydroxide for water splitting: Experimental and photo-assisted density functional theory calculations. Journal of Colloid and Interface Science, 2022, 623, 285-293.	9.4	9
101	Electrochemical Preparation of Lithium-Rich Graphite Anode for LiFePO4 Battery. High Energy Chemistry, 2020, 54, 441-454.	0.9	7
102	Enhanced oxygen reduction reaction performance of Co@N–C derived from metal-organic frameworks ZIF-67 via a continuous microchannel reactor. Chinese Chemical Letters, 2023, 34, 107128.	9.0	7
103	Synthesis of Three-Dimensional Hierarchically Porous Carbon Monolith via "Pyrolysis-Capture― Strategy for Supercapacitors. Journal of the Electrochemical Society, 2018, 165, A2415-A2420.	2.9	6
104	In Situ-Generated Supported Potassium Lactate: Stable Catalysis for Vapor-Phase Dehydration of Lactic Acid to Acrylic Acid. ACS Omega, 2019, 4, 8146-8166.	3.5	6
105	Luminogen-functionalized mesoporous SBA-15 for fluorescent detection of antibiotic cefalexin. Journal of Materials Research, 2018, 33, 1442-1448.	2.6	4
106	Synthesis of rich fluffy porous carbon spheres by dissolutionâ€"reassembly method for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 3316-3324.	2.2	4
107	Tailoring the Electrode Interface with Enhanced Electron Transfer for High-Rate Lithium-Ion Battery Anodes. Industrial & Engineering Chemistry Research, 2016, 55, 6643-6648.	3.7	3
108	Compulsive malposition of birnessite slab in 2D-Parallel birnessite on β-MnO2 networks for enhanced pseudocapacitance performances. Nano Materials Science, 2021, 3, 404-411.	8.8	3

#	Article	IF	CITATIONS
109	Graphene-CdS Composites with Visible-Light Photocatalytic Activity in Degrading Methylene Blue. Nanoscience and Nanotechnology - Asia, 2012, 2, 79-89.	0.7	3
110	Controllable fabrication of graphitic nanocarbon encapsulating FexNiy hybrids for efficient splitting of water. Journal of Alloys and Compounds, 2020, 829, 154421.	5.5	2
111	The Control of Attached Acid Groups on Sulfonated Polystyrene Nanospheres through the Design of Material Structure. Applied Mechanics and Materials, 2012, 182-183, 222-231.	0.2	O
112	Electrochemical Properties of Nitrogen-Enriched Templated Microporous Carbons in Different Aqueous Electrolytes. Advanced Materials Research, 0, 571, 27-37.	0.3	O