Alfredo Pasquarello

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6770346/alfredo-pasquarello-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29,608 67 167 350 h-index g-index citations papers 33,186 7.08 370 4.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
350	One-Shot Approach for Enforcing Piecewise Linearity on Hybrid Functionals: Application to Band Gap Predictions <i>Journal of Physical Chemistry Letters</i> , 2022 , 3066-3071	6.4	O
349	Atomic-Level Description of Thermal Fluctuations in Inorganic Lead Halide Perovskites <i>Journal of Physical Chemistry Letters</i> , 2022 , 3382-3391	6.4	2
348	Vertex function compliant with the Ward identity for quasiparticle self-consistent calculations beyond GW. <i>Physical Review B</i> , 2021 , 103,	3.3	3
347	Band gaps of liquid water and hexagonal ice through advanced electronic-structure calculations. <i>Physical Review Research</i> , 2021 , 3,	3.9	3
346	Electronic Structure of Water from Koopmans-Compliant Functionals. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3923-3930	6.4	O
345	High-performance NiOOH/FeOOH electrode for OER catalysis. <i>Journal of Chemical Physics</i> , 2021 , 154, 024706	3.9	1
344	Atomic-Scale Modelling of Electrochemical Interfaces through Constant Fermi Level Molecular Dynamics 2021 , 221-240		1
343	Band alignment at the CaF2/Si(111) interface through advanced electronic structure calculations. <i>Physical Review B</i> , 2020 , 101,	3.3	3
342	Hydrogen Bonding of Ammonia with (H,OH)-Si(001) Revealed by Experimental and Ab Initio Photoelectron Spectroscopy. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 5378-5388	2.8	1
341	Oxygen evolution reaction: Bifunctional mechanism breaking the linear scaling relationship. <i>Journal of Chemical Physics</i> , 2020 , 152, 104712	3.9	8
340	On the Electronic and Optical Properties of Metal®rganic Frameworks: Case Study of MIL-125 and MIL-125-NH2. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 4065-4072	3.8	26
339	Accurate optical spectra through time-dependent density functional theory based on screening-dependent hybrid functionals. <i>Physical Review Research</i> , 2020 , 2,	3.9	11
338	Exploring Defects in Semiconductor Materials Through Constant Fermi Level Ab-Initio Molecular Dynamics. <i>Springer Series in Materials Science</i> , 2020 , 39-55	0.9	
337	Small Electron Polarons in CsPbBr3: Competition between Electron Localization and Delocalization. <i>Chemistry of Materials</i> , 2020 , 32, 8393-8400	9.6	6
336	Low-Frequency Dielectric Response of Tetragonal Perovskite CHNHPbl. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6279-6285	6.4	4
335	Finite-size corrections of defect energy levels involving ionic polarization. <i>Physical Review B</i> , 2020 , 102,	3.3	5
334	Evaluation of Photocatalysts for Water Splitting through Combined Analysis of Surface Coverage and Energy-Level Alignment. <i>ACS Catalysis</i> , 2020 , 10, 13186-13195	13.1	10

333	Unraveling the synergy between metal®rganic frameworks and co-catalysts in photocatalytic water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20493-20502	13	5
332	Band alignment at EGa2O3/III-N (III = Al, Ga) interfaces through hybrid functional calculations. <i>Applied Physics Letters</i> , 2020 , 117, 102103	3.4	10
331	Adjustable potential probes for band-gap predictions of extended systems through nonempirical hybrid functionals. <i>Physical Review B</i> , 2019 , 99,	3.3	12
330	Reaction pathway of oxygen evolution on Pt(1 1 1) revealed through constant Fermi level molecular dynamics. <i>Journal of Catalysis</i> , 2019 , 375, 135-139	7-3	7
329	Defect Formation Energies of Interstitial C, Si, and Ge Impurities in EGa2O3. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800633	2.5	7
328	Electron and Hole Polarons at the BiVO-Water Interface. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2019 , 11, 18423-18426	9.5	16
327	Extrinsic Defects in Amorphous Oxides: Hydrogen, Carbon, and Nitrogen Impurities in Alumina. <i>Physical Review Applied</i> , 2019 , 11,	4.3	4
326	Effect of the Solvent on the Oxygen Evolution Reaction at the TiO2Water Interface. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 18467-18474	3.8	17
325	Picture of the wet electron: a localized transient state in liquid water. Chemical Science, 2019, 10, 7442-	-7 4 .48	22
324	Absolute band alignment at semiconductor-water interfaces using explicit and implicit descriptions for liquid water. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	33
323	Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites. <i>Physical Review Materials</i> , 2019 , 3,	3.2	12
322	Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof. <i>ACS Applied Materials & Description of the Charge Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof. ACS Applied Materials & Description of the Charge Storage Mechanism and Consequences Thereof.</i>	682 ⁵	114
321	pH-Dependent Catalytic Reaction Pathway for Water Splitting at the BiVO4Water Interface from the Band Alignment. <i>ACS Energy Letters</i> , 2018 , 3, 829-834	20.1	34
320	pH-Dependent Surface Chemistry from First Principles: Application to the BiVO(010)-Water Interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 10011-10021	9.5	32
319	Comment on "Fundamental Resolution of Difficulties in the Theory of Charged Point Defects in Semiconductors". <i>Physical Review Letters</i> , 2018 , 120, 039603	7.4	3
318	Origin of low electronBole recombination rate in metal halide perovskites. <i>Energy and Environmental Science</i> , 2018 , 11, 101-105	35.4	86
317	Nonempirical hybrid functionals for band gaps and polaronic distortions in solids. <i>Physical Review B</i> , 2018 , 97,	3.3	49
316	Atomic-Scale Simulation of Electrochemical Processes at Electrode/Water Interfaces under Referenced Bias Potential. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1880-1884	6.4	48

315	Role of Polarons in Water Splitting: The Case of BiVO4. ACS Energy Letters, 2018, 3, 1693-1697	20.1	50
314	Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling. <i>Chemistry of Materials</i> , 2018 , 30, 3874-3881	9.6	236
313	Mechanism suppressing charge recombination at iodine defects in CH3NH3PbI3 by polaron formation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16863-16867	13	23
312	Partial vibrational density of states for amorphous solids from inelastic neutron scattering. <i>Physical Review B</i> , 2018 , 98,	3.3	2
311	Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators. <i>Physical Review Materials</i> , 2018 , 2,	3.2	93
310	Alignment of Redox Levels at Semiconductor Water Interfaces. Chemistry of Materials, 2018, 30, 94-111	9.6	56
309	Reactivity and energy level of a localized hole in liquid water. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 30281-30289	3.6	4
308	Sizable Excitonic Effects Undermining the Photocatalytic Efficiency of ECuVO. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5698-5703	6.4	18
307	Absolute Energy Levels of Liquid Water. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3212-3216	6.4	35
306	Hole diffusion across leaky amorphous TiO2 coating layers for catalytic water splitting at photoanodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11804-11810	13	14
305	Surface Polarons Reducing Overpotentials in the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 584	47 ₃ 5£5	127
304	Oxygen DX center in In0.17Al0.83N: Nonradiative recombination and persistent photoconductivity. <i>Applied Physics Letters</i> , 2017 , 110, 072101	3.4	2
303	Electronic Levels of Excess Electrons in Liquid Water. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 205.	5 ⁄2. µ59	45
302	Nature of electron trap states under inversion at In0.53Ga0.47As/Al2O3 interfaces. <i>Applied Physics Letters</i> , 2017 , 110, 111602	3.4	2
301	Redox Levels through Constant Fermi-Level ab Initio Molecular Dynamics. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 1769-1777	6.4	13
300	Electronic and structural characterization of barrier-type amorphous aluminium oxide. <i>Electrochimica Acta</i> , 2017 , 224, 503-516	6.7	17
299	Predictive Determination of Band Gaps of Inorganic Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5507-5512	6.4	63
298	Identification of Semiconductor Defects through Constant-Fermi-Level Ab Initio Molecular Dynamics: Application to GaAs. <i>Physical Review Applied</i> , 2017 , 8,	4.3	4

(2015-2017)

297	Migration of Mg and other interstitial metal dopants in GaN. <i>Physica Status Solidi - Rapid Research Letters</i> , 2017 , 11, 1700081	2.5	9	
296	Migration of Mg and other interstitial metal dopants in GaN (Phys. Status Solidi RRL 7/2017). <i>Physica Status Solidi - Rapid Research Letters</i> , 2017 , 11, 1770337	2.5		
295	Electron trap states at InGaAs/oxide interfaces under inversion through constant Fermi-level ab initio molecular dynamics. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 505702	1.8	3	
294	Partial Molar Volumes of Aqua Ions from First Principles. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 3427-3431	6.4	5	
293	Accuracy of GW for calculating defect energy levels in solids. <i>Physical Review B</i> , 2017 , 96,	3.3	17	
292	Note: Assessment of the SCAN+rVV10 functional for the structure of liquid water. <i>Journal of Chemical Physics</i> , 2017 , 147, 216101	3.9	23	
291	Comprehensive modeling of the band gap and absorption spectrum of BiVO4. <i>Physical Review Materials</i> , 2017 , 1,	3.2	31	
2 90	Self-compensation due to point defects in Mg-doped GaN. <i>Physical Review B</i> , 2016 , 93,	3.3	85	
289	Structural, Dynamical, and Electronic Properties of Liquid Water: A Hybrid Functional Study. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 7456-70	3.4	43	
288	Oxygen defects in GaAs: A hybrid functional study. <i>Physical Review B</i> , 2016 , 93,	3.3	8	
287	Diffusion of interstitial oxygen in silicon and germanium: a hybrid functional study. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 495801	1.8	4	
286	Ablinitio Electronic Structure of Liquid Water. <i>Physical Review Letters</i> , 2016 , 117, 186401	7.4	50	
285	Giant apparent lattice distortions in STM images of corrugated sp2-hybridised monolayers. <i>New Journal of Physics</i> , 2016 , 18, 103027	2.9	10	
284	Absolute deformation potentials of two-dimensional materials. <i>Physical Review B</i> , 2016 , 94,	3.3	27	
283	Oxygen defects in amorphous Al2O3: A hybrid functional study. <i>Applied Physics Letters</i> , 2016 , 109, 062	90 ₃ 3 ₄	30	
282	Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 3456-62	6.4	19	
281	Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions. <i>Journal of Chemical Physics</i> , 2015 , 142, 034501	3.9	57	
280	First-principles determination of defect energy levels through hybrid density functionals and GW. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 133202	1.8	38	

279	Energetics of native point defects in GaN: A density-functional study. <i>Microelectronic Engineering</i> , 2015 , 147, 51-54	2.5	33
278	Arsenic related defect states resonant with the semiconductor conduction band at the In0.53Ga0.47As/oxide interface: A density functional study. <i>Microelectronic Engineering</i> , 2015 , 147, 26	0-263	13
277	Accurate band gaps of extended systems via efficient vertex corrections in GW. <i>Physical Review B</i> , 2015 , 92,	3.3	54
276	Fermi-level pinning through defects at GaAs/oxide interfaces: A density functional study. <i>Physical Review B</i> , 2015 , 92,	3.3	26
275	Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals. Journal of Chemical Physics, 2015 , 143, 244508	3.9	46
274	Band alignment and chemical bonding at the GaAs/Al2O3 interface: A hybrid functional study. <i>Applied Physics Letters</i> , 2015 , 107, 211601	3.4	16
273	Interfacial Ga-As suboxide: Structural and electronic properties. <i>Applied Physics Letters</i> , 2015 , 107, 031	160554	10
272	Band offsets of lattice-matched semiconductor heterojunctions through hybrid functionals and G0W0. <i>Physical Review B</i> , 2014 , 89,	3.3	81
271	Minimum energy path and atomistic mechanism of the elementary step in oxygen diffusion in silicon: A density-functional study. <i>Physical Review B</i> , 2014 , 89,	3.3	11
270	Intercalation of H at the graphene/SiC(0001) interface: Structure and stability from first principles. <i>Applied Surface Science</i> , 2014 , 291, 64-68	6.7	9
269	Defect levels at GaAs/Al2O3 interfaces: AsAs dimer vs. Ga dangling bond. <i>Applied Surface Science</i> , 2014 , 291, 16-19	6.7	5
268	Origin of Fermi-level pinning at GaAs surfaces and interfaces. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 492202	1.8	15
267	Band-edge positions in GW: Effects of starting point and self-consistency. <i>Physical Review B</i> , 2014 , 90,	3.3	57
266	Infrared spectra of jennite and tobermorite from first-principles. <i>Cement and Concrete Research</i> , 2014 , 60, 11-23	10.3	47
265	The OAs defect in GaAs: A hybrid density functional study. <i>Applied Surface Science</i> , 2014 , 291, 6-10	6.7	10
264	Defect energy levels of the AsAs dimer at InGaAs/oxide interfaces: A first principles study. <i>Microelectronic Engineering</i> , 2013 , 109, 60-63	2.5	10
263	Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory. <i>Physical Review B</i> , 2013 , 88,	3.3	56
262	Amphoteric defects in GaAs leading to Fermi-level pinning: A hybrid functional study. Microelectronic Engineering, 2013, 109, 50-53	2.5	13

(2011-2013)

261	Finite-size supercell correction for charged defects at surfaces and interfaces. <i>Physical Review Letters</i> , 2013 , 110, 095505	7.4	113
2 60	Accurate determination of charge transition levels of the As-As dimer defect at GaAs/oxide interfaces through hybrid functionals. <i>Applied Physics Letters</i> , 2013 , 103, 041602	3.4	11
259	Assignment of Fermi-level pinning and optical transitions to the (AsGa)2-OAs center in oxygen-doped GaAs. <i>Applied Physics Letters</i> , 2013 , 103, 142108	3.4	8
258	First principles study of As 2p core-level shifts at GaAs/Al2O3 interfaces. <i>Applied Physics Letters</i> , 2013 , 102, 201607	3.4	13
257	First-principles study of H adsorption on graphene/SiC(0001). <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 2523-2528	1.3	3
256	Germanium core-level shifts at Ge/GeO2 interfaces through hybrid functionals. <i>Physical Review B</i> , 2012 , 85,	3.3	16
255	Comparison of vacancy and antisite defects in GaAs and InGaAs through hybrid functionals. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 045801	1.8	37
254	Comparison between various finite-size supercell correction schemes for charged defect calculations. <i>Physica B: Condensed Matter</i> , 2012 , 407, 3063-3067	2.8	18
253	Intrinsic defects in GaAs and InGaAs through hybrid functional calculations. <i>Physica B: Condensed Matter</i> , 2012 , 407, 2833-2837	2.8	40
252	First principles study of electronic and structural properties of the Ge/GeO2 interface. <i>Physica B: Condensed Matter</i> , 2012 , 407, 2926-2931	2.8	5
251	Stability of valence alternation pairs across the substoichiometric region at Ge/GeO2 interfaces. <i>Physica B: Condensed Matter</i> , 2012 , 407, 2939-2942	2.8	4
250	Low-strain interface models for epitaxial graphene on SiC(0001). <i>Diamond and Related Materials</i> , 2012 , 23, 178-183	3.5	11
249	Finite-size supercell correction schemes for charged defect calculations. <i>Physical Review B</i> , 2012 , 86,	3.3	295
248	Carbon rehybridization at the graphene/SiC(0001) interface: Effect on stability and atomic-scale corrugation. <i>Physical Review B</i> , 2012 , 85,	3.3	29
247	Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory. <i>Physical Review B</i> , 2012 , 86,	3.3	62
246	Band-edge problem in the theoretical determination of defect energy levels: The O vacancy in ZnO as a benchmark case. <i>Physical Review B</i> , 2011 , 84,	3.3	122
245	Assessing the accuracy of hybrid functionals in the determination of defect levels: Application to the As antisite in GaAs. <i>Physical Review B</i> , 2011 , 84,	3.3	69
244	Defect levels of carbon-related defects at the SiC/SiO2 interface from hybrid functionals. <i>Physical Review B</i> , 2011 , 83,	3.3	36

243	Charge transition levels of carbon-, oxygen-, and hydrogen-related defects at the SiC/SiO2 interface through hybrid functionals. <i>Physical Review B</i> , 2011 , 84,	3.3	69
242	Time-Dependent Density Functional Study on the Excitation Spectrum of Point Defects in Semiconductors 2011 , 341-358		
241	SiO2 in Density Functional Theory and Beyond 2011 , 201-211		
240	Electrostatic Interactions between Charged Defects in Supercells 2011 , 241-258		
239	Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors 2011 , 213-239		6
238	Ab Initio Greenß Function Calculation of Hyperfine Interactions for Shallow Defects in Semiconductors 2011 , 305-339		
237	Accurate Gap Levels and Their Role in the Reliability of Other Calculated Defect Properties 2011 , 139-1	54	
236	Critical Evaluation of the LDA + U Approach for Band Gap Corrections in Point Defect Calculations: The Oxygen Vacancy in ZnO Case Study 2011 , 165-181		
235	Accurate KohnBham DFT With the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling 2011 , 285-303		
234	Which Electronic Structure Method for The Study of Defects: A Commentary 2011 , 359-379		
233	Formation Energies of Point Defects at Finite Temperatures 2011 , 259-284		
232	Defect levels through hybrid density functionals: Insights and applications. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 775-789	1.3	228
231	Advanced Calculations for Defects in Solids Electronic Structure Methods. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 17-18	1.3	2
230	Vibrational properties of vitreous GeSe2 with the Becke-Lee-Yang-Parr density functional. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 295401	1.8	13
229	Structural Composition of First-Neighbor Shells in GeSe2 and GeSe4 Glasses from a First-Principles Analysis of NMR Chemical Shifts. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7755-7759	3.8	36
228	Identification of defect levels at As/oxide interfaces through hybrid functionals. <i>Microelectronic Engineering</i> , 2011 , 88, 1436-1439	2.5	32
227	Charge trapping in substoichiometric germanium oxide. <i>Microelectronic Engineering</i> , 2011 , 88, 1428-14.	312.5	11
226	Stability and charge transfer at the interface between SiC(0001) and epitaxial graphene. <i>Microelectronic Engineering</i> , 2011 , 88, 1478-1481	2.5	9

225	Electron density of states at Ge/oxide interfaces due to formation. <i>Microelectronic Engineering</i> , 2011 , 88, 391-394	2.5	11
224	Band offsets at Ge/GeO2 interfaces: Effect of different interfacial bonding patterns. Microelectronic Engineering, 2011 , 88, 1467-1470	2.5	13
223	Predicting Polaronic Defect States by Means of Generalized Koopmans Density Functional Calculations 2011 , 183-199		1
222	LDA + U and Hybrid Functional Calculations for Defects in ZnO, SnO2, and TiO2 2011 , 155-164		1
221	Defect Levels Through Hybrid Density Functionals: Insights and Applications 2011 , 111-137		1
220	Accurate Treatment of Solids with the HSE Screened Hybrid 2011 , 97-110		
219	Calculation of Semiconductor Band Structures and Defects by the Screened Exchange Density Functional 2011 , 79-96		
218	Accelerating GW Calculations with Optimal Polarizability Basis 2011 , 61-78		
217	Electronic Properties of Interfaces and Defects from Many-Body Perturbation Theory: Recent Developments and Applications 2011 , 33-60		
216	Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids 2011 , 17-31		
215	Advances in Electronic Structure Methods for Defects and Impurities in Solids 2011 , 1-16		3
214	Dangling bond charge transition levels in AlAs, GaAs, and InAs. <i>Applied Physics Letters</i> , 2010 , 97, 19190	1 3.4	25
213	Charge transition levels of nitrogen dangling bonds at Si/SiO2 interfaces: A first-principles study. <i>Physical Review B</i> , 2010 , 81,	3.3	17
212	Metal adatoms on graphene and hexagonal boron nitride: Towards rational design of self-assembly templates. <i>Physical Review B</i> , 2010 , 82,	3.3	78
211	Structural assignments of NMR chemical shifts in GexSe1⊠ glasses via first-principles calculations for GeSe2, Ge4Se9, and GeSe crystals. <i>Physical Review B</i> , 2010 , 82,	3.3	38
210	Alignment of defect levels and band edges through hybrid functionals: Effect of screening in the exchange term. <i>Physical Review B</i> , 2010 , 81,	3.3	112
209	(Invited) Electronic and Structural Properties at Ge/GeO2 Interfaces: A Density-Functional Investigation. <i>ECS Transactions</i> , 2010 , 33, 123-132	1	7
208	Electron trapping in substoichiometric germanium oxide. <i>Applied Physics Letters</i> , 2010 , 97, 092903	3.4	29

207	First-principles investigation of the relation between structural and NMR parameters in vitreous GeO2. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 145501	1.8	11
206	Formation of substoichiometric GeOx at the Ge⊞fO2 interface. <i>Applied Physics Letters</i> , 2010 , 97, 20290	83.4	13
205	Energy levels of candidate defects at SiC/SiO2 interfaces 2010 ,		13
204	Alignment of Defect Energy Levels at Si-SiO2 Interface from Hybrid Density Functional Calculations 2010 ,		5
203	A hybrid functional scheme for defect levels and band alignments at semiconductorBxide interfaces. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 270-276	1.6	17
202	Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra. <i>Physical Review B</i> , 2009 , 79,	3.3	51
201	Nitrogen fixation at passivated Fe nanoclusters supported by an oxide surface: Identification of viable reaction routes using density functional calculations. <i>Physical Review B</i> , 2009 , 80,	3.3	2
200	Hybrid-functional calculations with plane-wave basis sets: Effect of singularity correction on total energies, energy eigenvalues, and defect energy levels. <i>Physical Review B</i> , 2009 , 80,	3.3	96
199	First principles investigation of defect energy levels at semiconductor-oxide interfaces: Oxygen vacancies and hydrogen interstitials in the SiBiO2HfO2 stack. <i>Journal of Applied Physics</i> , 2009 , 105, 061603	2.5	38
198	Atomistic model structure of the Ge(100)GeO2 interface. <i>Microelectronic Engineering</i> , 2009 , 86, 1589-15	5 9.1 5	11
197	First principles study of substoichiometric germanium oxides. <i>Microelectronic Engineering</i> , 2009 , 86, 176	6 0 -ჭ76	2 15
196	Li-related defects in ZnO: Hybrid functional calculations. <i>Physica B: Condensed Matter</i> , 2009 , 404, 4797-4	4799	11
195	QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 395502	1.8	13251
194	Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride. <i>Physical Review B</i> , 2009 , 80,	3.3	98
193	Atomic structure of the two intermediate phase glasses SiSe4 and GeSe4. <i>Physical Review B</i> , 2009 , 79,	3.3	55
192	Band offsets at the Ge/GeO2 interface through hybrid density functionals. <i>Applied Physics Letters</i> , 2009 , 94, 141911	3.4	61
191	A hybrid density functional study of lithium in ZnO: Stability, ionization levels, and diffusion. <i>Physical Review B</i> , 2009 , 80,	3.3	92
190	Effect of metal elements in catalytic growth of carbon nanotubes. <i>Physical Review Letters</i> , 2008 , 100, 156102	7.4	176

(2007-2008)

189	Band alignments and defect levels in Si⊞fO2 gate stacks: Oxygen vacancy and Fermi-level pinning. <i>Applied Physics Letters</i> , 2008 , 92, 132911	3.4	61
188	Defect energy levels in density functional calculations: alignment and band gap problem. <i>Physical Review Letters</i> , 2008 , 101, 046405	7.4	231
187	Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations. <i>Physical Review Letters</i> , 2008 , 101, 106802	7.4	207
186	Defect levels of dangling bonds in silicon and germanium through hybrid functionals. <i>Physical Review B</i> , 2008 , 78,	3.3	133
185	First-principles theory of infrared absorption spectra at surfaces and interfaces: Application to the Si(100):H2O surface. <i>Physical Review B</i> , 2008 , 78,	3.3	6
184	Band offsets at the Si/SiO2 interface from many-body perturbation theory. <i>Physical Review Letters</i> , 2008 , 100, 186401	7.4	141
183	Charge state of the O2 molecule during silicon oxidation through hybrid functional calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	14
182	Carbon diffusion in CVD growth of carbon nanotubes on metal nanoparticles. <i>Physica Status Solidi</i> (B): Basic Research, 2008 , 245, 2185-2188	1.3	14
181	Band gap opening at the 6HBiC(0 0 0 1) surface passivated by an epitaxial silicon oxynitride layer: A first-principles investigation. <i>Surface Science</i> , 2008 , 602, 2989-2993	1.8	6
180	Charge transition levels of the Ge dangling bond defect at Ge/insulator interfaces. <i>Materials Science in Semiconductor Processing</i> , 2008 , 11, 226-229	4.3	3
179	Short and intermediate range order in amorphous GeSe2. <i>Physical Review B</i> , 2008 , 77,	3.3	54
178	Migration of oxygen vacancy in HfO2 and across the HfO2BiO2 interface: A first-principles investigation. <i>Applied Physics Letters</i> , 2007 , 91, 192905	3.4	114
177	Proton Diffusion in Amorphous SiO2 and Hafnium Silicate by Ab Initio Molecular Dynamics. <i>AIP Conference Proceedings</i> , 2007 ,	O	2
176	Amorphous hafnium silicates: structural, electronic and dielectric properties. <i>Microelectronic Engineering</i> , 2007 , 84, 2416-2419	2.5	16
175	Alignment of hydrogen-related defect levels at the SiBiO2 interface. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 546-549	2.8	24
174	Semiconductor defects at the 4H-SiC(0001)/SiO2 interface. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 556-559	2.8	14
173	Effect of improved band-gap description in density functional theory on defect energy levels in Equartz. <i>Physica B: Condensed Matter</i> , 2007 , 401-402, 670-673	2.8	27
172	First principles investigation of defects at interfaces between silicon and amorphous high-loxides. <i>Microelectronic Engineering</i> , 2007 , 84, 2022-2027	2.5	44

171	Protons at the Si-SiO2 interface: a first principle investigation. <i>Microelectronic Engineering</i> , 2007 , 84, 2035-2038	2.5	3
170	Vibrational spectra of vitreous SiO and vitreous GeO from first principles. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 415112	1.8	21
169	Structural properties of amorphous GeSe. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 415111	1.8	9
168	Electronic properties of an epitaxial silicon oxynitride layer on a 6H-SiC(0001) surface: A first-principles investigation. <i>Applied Physics Letters</i> , 2007 , 91, 061930	3.4	16
167	Band gaps and dielectric constants of amorphous hafnium silicates: A first-principles investigation. <i>Applied Physics Letters</i> , 2007 , 90, 082907	3.4	43
166	Structural and electronic properties of an abrupt 4HBiC(0001)BiO2 interface model: Classical molecular dynamics simulations and density functional calculations. <i>Physical Review B</i> , 2007 , 76,	3.3	55
165	First-principles investigation of the structural and vibrational properties of vitreous GeSe2. <i>Physical Review B</i> , 2007 , 75,	3.3	40
164	Hydrogen in Si(100)BiO2⊞fO2 gate stacks: Relevant charge states and their location. <i>Applied Physics Letters</i> , 2007 , 91, 262901	3.4	21
163	Hyper-Raman Spectrum of Vitreous Silica from First Principles. <i>Physical Review Letters</i> , 2007 , 98,	7.4	6
162	Proton-induced fixed positive charge at the Si(100)-SiO2 interface. <i>Physical Review Letters</i> , 2007 , 99, 126102	7.4	20
161	Microscopic origin of concentration fluctuations over intermediate range distances in network-forming disordered systems. <i>Physical Review B</i> , 2007 , 75,	3.3	27
160	Structural and Electronic Properties of Oxygen Vacancies in Monoclinic HfO2. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 996, 1		1
159	Umari and Pasquarello Reply:. <i>Physical Review Letters</i> , 2006 , 96,	7.4	10
158	Origin of fine structure in si photoelectron spectra at silicon surfaces and interfaces. <i>Physical Review Letters</i> , 2006 , 96, 157601	7.4	50
157	Oxygen vacancy in monoclinic HfO2: A consistent interpretation of trap assisted conduction, direct electron injection, and optical absorption experiments. <i>Applied Physics Letters</i> , 2006 , 89, 262904	3.4	200
156	Proton diffusion mechanism in amorphous SiO2. <i>Physical Review Letters</i> , 2006 , 97, 155901	7.4	54
155	Mixed Wannier-Bloch functions for electrons and phonons in periodic systems. <i>Physical Review Letters</i> , 2006 , 96, 216403	7.4	17
154	Ion scattering simulations of the Si(100)BiO2 interface. <i>Physical Review B</i> , 2006 , 74,	3.3	2

153	Vibrational spectra of vitreous germania from first-principles. <i>Physical Review B</i> , 2006 , 74,	3.3	55
152	Theory of atomic-scale dielectric permittivity at insulator interfaces. <i>Physical Review B</i> , 2005 , 71,	3.3	108
151	Equivalent oxide thickness of a thin oxide interlayer in gate insulator stacks on silicon. <i>Applied Physics Letters</i> , 2005 , 86, 192901	3.4	21
150	An electronegativity-induced spin repulsion effect. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 8385-90	2.8	3
149	First-principles codes for computational crystallography in the Quantum-ESPRESSO package. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2005 , 220,	1	122
148	Infrared and Raman spectra of disordered materials from first principles. <i>Diamond and Related Materials</i> , 2005 , 14, 1255-1261	3.5	39
147	Atomistic models of the Si(100)BiO2interface: structural, electronic and dielectric properties. Journal of Physics Condensed Matter, 2005 , 17, S2065-S2074	1.8	41
146	Infrared properties of ultrathin oxides on Si(100). <i>Microelectronic Engineering</i> , 2005 , 80, 420-423	2.5	7
145	Ab initio study of charged states of H in amorphous SiO2. <i>Microelectronic Engineering</i> , 2005 , 80, 288-29 ⁻²	1 2.5	20
144	Electronic and dielectric properties of a suboxide interlayer at the siliconbxide interface in MOS devices. <i>Surface Science</i> , 2005 , 586, 183-191	1.8	38
143	Abrupt model interface for the 4H(1000)SiC-SiO2 interface. <i>Microelectronic Engineering</i> , 2005 , 80, 38-41	2.5	20
142	O2 oxidation reaction at the Si(100)-SiO2 interface: A first-principles investigation. <i>Journal of Materials Science</i> , 2005 , 40, 3047-3050	4.3	9
141	Density functional theory with finite electric field. <i>International Journal of Quantum Chemistry</i> , 2005 , 101, 666-670	2.1	10
140	Titanium oxides and silicates as high-Idielectrics: A first-principles investigation. <i>International Journal of Quantum Chemistry</i> , 2005 , 101, 793-801	2.1	18
139	Modelling of dielectric constants of amorphous Zr silicates. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S2089-S2098	1.8	1
138	Atomic-scale modelling of kinetic processes occurring during silicon oxidation. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S2051-S2063	1.8	18
137	Modelling of paramagnetic trivalent silicon defect centres in amorphous silica and at SiBiO2 interfaces. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S2099-S2113	1.8	9
136	Atomically controlled interfaces for future nanoelectronics. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, V1-V5	1.8	10

135	Infrared spectra at surfaces and interfaces from first principles: evolution of the spectra across the Si(100)-SiO2 interface. <i>Physical Review Letters</i> , 2005 , 95, 187402	7.4	48
134	Comment on "Structural analysis of the SiO2/Si(100) interface by means of photoelectron diffraction". <i>Physical Review Letters</i> , 2005 , 94, 189601; discussion 189602	7.4	6
133	Ab initio molecular dynamics of liquid hydrogen chloride. <i>Journal of Chemical Physics</i> , 2005 , 122, 1145	123.9	6
132	Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra. <i>Physical Review Letters</i> , 2005 , 95, 137401	7.4	57
131	Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra. <i>Physical Review Letters</i> , 2005 , 95, 075505	7.4	52
130	Supported nanoclusters: Preadsorbates tuning catalytic activity. <i>Physical Review B</i> , 2005 , 71,	3.3	5
129	Electronic Structure at Realistic Si(100)-SiO2Interfaces. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 7895-7898	1.4	6
128	Density-functional perturbational theory for dielectric tensors in the ultrasoft pseudopotential scheme. <i>Physical Review B</i> , 2004 , 69,	3.3	22
127	Charge fluctuations and concentration fluctuations at intermediate-range distances in the disordered network-forming materials SiO2, SiSe2, and GeSe2. <i>Physical Review B</i> , 2004 , 70,	3.3	38
126	Silicon crystal distortions at the Si(1 0 0)BiO2 interface from analysis of ion-scattering. <i>Microelectronic Engineering</i> , 2004 , 72, 197-200	2.5	5
125	Nitrogen adsorption on a supported iron nanocluster. <i>Vacuum</i> , 2004 , 74, 173-177	3.7	2
124	Dielectric effect of a thin SiO2 interlayer at the interface between silicon and high-k oxides. <i>Microelectronic Engineering</i> , 2004 , 72, 299-303	2.5	24
123	Atomistic model structure of the Si(100)BiO2 interface from a synthesis of experimental data. <i>Applied Surface Science</i> , 2004 , 234, 190-196	6.7	11
122	Dielectric susceptibility of dipolar molecular liquids by ab initio molecular dynamics: application to liquid HCl. <i>Chemical Physics Letters</i> , 2004 , 390, 193-198	2.5	15
121	Multiscale modeling of oxygen diffusion through the oxide during silicon oxidation. <i>Physical Review B</i> , 2004 , 70,	3.3	81
120	Noncollinear magnetism in liquid oxygen: A first-principles molecular dynamics study. <i>Physical Review B</i> , 2004 , 70,	3.3	25
119	First-principles investigation of high-Idielectrics: Comparison between the silicates and oxides of hafnium and zirconium. <i>Physical Review B</i> , 2004 , 69,	3.3	124
118	Reaction of the oxygen molecule at the Si(100)-SiO2 interface during silicon oxidation. <i>Physical Review Letters</i> , 2004 , 93, 086102	7.4	64

117	Modeling phase separation in nonstoichiometric silica. <i>Physical Review Letters</i> , 2004 , 93, 135501	7.4	17
116	Finite electric field in density functional calculations with periodic boundary conditions. <i>Computational Materials Science</i> , 2004 , 30, 116-119	3.2	1
115	Car-Parrinello Molecular Dynamics in a Finite Homogeneous Electric Field. <i>AIP Conference Proceedings</i> , 2003 ,	Ο	2
114	Dependence of the O2diffusion rate on oxide thickness during silicon oxidation. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S1553-S1560	1.8	9
113	Structural and magnetic correlations in liquid oxygen: anab initiomolecular dynamics study. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S89-S94	1.8	2
112	First-principles analysis of the Raman spectrum of vitreous silica: comparison with the vibrational density of states. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S1547-S1552	1.8	18
111	Evidence of concentration fluctuations in disordered network-forming systems: the case of GeSe4and SiSe2. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, S1537-S1546	1.8	6
110	Dynamical monopoles and dipoles in a condensed molecular system: The case of liquid water. <i>Physical Review B</i> , 2003 , 68,	3.3	33
109	Transition structure at the Si(100)-SiO2 interface. <i>Physical Review Letters</i> , 2003 , 90, 186101	7.4	77
108	Atomic-scale investigation of the dielectric screening at the interface between silicon and its oxide. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 786, 511		
107	Supported fe nanoclusters: evolution of magnetic properties with cluster size. <i>Physical Review Letters</i> , 2003 , 90, 247202	7.4	42
106	Dielectric discontinuity at interfaces in the atomic-scale limit: permittivity of ultrathin oxide films on silicon. <i>Physical Review Letters</i> , 2003 , 91, 267601	7.4	71
105	Atomistic structure of the Si(100)BiO2 interface: A synthesis of experimental data. <i>Applied Physics Letters</i> , 2003 , 83, 1417-1419	3.4	65
104	Absence of charge-charge correlations at intermediate-range distances in disordered network-forming materials. <i>Physical Review B</i> , 2003 , 68,	3.3	23
103	Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum. <i>Physical Review Letters</i> , 2003 , 90, 027401	7.4	116
102	Polarizability and dielectric constant in density-functional supercell calculations with discrete k-point samplings. <i>Physical Review B</i> , 2003 , 68,	3.3	30
101	Modeling of the Raman spectrum of vitreous silica: concentration of small ring structures. <i>Physica B: Condensed Matter</i> , 2002 , 316-317, 572-574	2.8	25
100	Atomic structure at the Si(001)BiO2 interface: from the interpretation of Si 2p core-level shifts to a model structure. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2002 , 96, 102-106	3.1	10

99	Energetics of oxygen species in crystalline and amorphous SiO2: a first-principles investigation. <i>Solid-State Electronics</i> , 2002 , 46, 1873-1878	1.7	5
98	Ab initio molecular dynamics investigation of the structure and the noncollinear magnetism in liquid oxygen: occurrence of O4 molecular units. <i>Physical Review Letters</i> , 2002 , 89, 197204	7.4	17
97	First-principles modeling of paramagnetic Si dangling-bond defects in amorphous SiO2. <i>Physical Review B</i> , 2002 , 66,	3.3	44
96	First-principles electronic structure study of Ti-PTCDA contacts. <i>Physical Review B</i> , 2002 , 65,	3.3	25
95	Dielectric constants of Zr silicates: a first-principles study. <i>Physical Review Letters</i> , 2002 , 89, 117601	7.4	63
94	Oxygen diffusion through the disordered oxide network during silicon oxidation. <i>Physical Review Letters</i> , 2002 , 88, 125901	7.4	86
93	Modeling of Si 2p core-level shifts at Si (ZrO2)x(SiO2)1⊠ interfaces. <i>Applied Physics Letters</i> , 2002 , 81, 4233-4235	3.4	17
92	Pressure-induced structural changes in liquid SiO2 from Ab initio simulations. <i>Physical Review Letters</i> , 2002 , 89, 245504	7.4	83
91	Ab initio molecular dynamics in a finite homogeneous electric field. <i>Physical Review Letters</i> , 2002 , 89, 157602	7.4	266
90	Oxygen species in SiO2: a first-principles investigation. <i>Microelectronic Engineering</i> , 2001 , 59, 167-172	2.5	6
89	Short- and intermediate-range structure of liquid GeSe2. Physical Review B, 2001, 64,	3.3	75
88	sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. <i>Physical Review B</i> , 2001 , 65,	3.3	281
87	First-principles study of structural, electronic, dynamical, and dielectric properties of zircon. <i>Physical Review B</i> , 2001 , 63,	3.3	80
86	First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. <i>Science</i> , 2001 , 291, 856-9	33.3	314
85	Origin of the first sharp diffraction peak in the structure factor of disordered network-forming systems: Layers or voids?. <i>Journal of Chemical Physics</i> , 2001 , 114, 7976-7979	3.9	60
84	Nitrogen 1s core-level shifts at the NH3 saturated Si(100)-2¶ surface: a first-principles study. <i>Surface Science</i> , 2001 , 490, L614-L618	1.8	19
83	First-principles study of dynamical and dielectric properties of tetragonal zirconia. <i>Physical Review B</i> , 2001 , 64,	3.3	121
82	First-principles simulation of vitreous systems. <i>Current Opinion in Solid State and Materials Science</i> , 2001 , 5, 503-508	12	12

81	First-principle study of C 1s core-level shifts in amorphous carbon. <i>Computational Materials Science</i> , 2001 , 22, 67-72	3.2	16
80	Raman scattering intensities in ⊞quartz: A first-principles investigation. <i>Physical Review B</i> , 2001 , 63,	3.3	143
79	Nitrogen bonding configurations at nitrided Si(001) surfaces and Si(001)BiO2 interfaces: A first-principles study of core-level shifts. <i>Physical Review B</i> , 2001 , 63,	3.3	54
78	Formation energy of threefold coordinated oxygen in SiO2 systems. <i>Applied Surface Science</i> , 2000 , 166, 451-454	6.7	11
77	Breakdown of intermediate-range order in liquid GeSe2at high temperatures. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, L697-L704	1.8	29
76	Chemisorption pathways and Si 2p core-level shifts for the interaction of spherosiloxane clusters with Si(100): Implications for photoemission in Si/SiO2 systems. <i>Applied Physics Letters</i> , 2000 , 76, 3873-3	38 7 5	15
75	Vibrational amplitudes in vitreous silica. <i>Physical Review B</i> , 2000 , 61, 3951-3959	3.3	20
74	Dangling bond defects at Si-SiO2 interfaces: atomic structure of the P(b1) center. <i>Physical Review Letters</i> , 2000 , 85, 2773-6	7.4	93
73	Concentration fluctuations on intermediate range distances in liquid GeSe2: the critical role of ionicity. <i>Computational Materials Science</i> , 2000 , 17, 115-121	3.2	14
72	Si-O-Si bond-angle distribution in vitreous silica from first-principles 29Si NMR analysis. <i>Physical Review B</i> , 2000 , 62, R4786-R4789	3.3	145
71	First-principles study of NH3 exposed Si(001)21: Relation between N 1s core-level shifts and atomic structure. <i>Applied Physics Letters</i> , 2000 , 76, 553-555	3.4	41
70	Validity of the bond-energy picture for the energetics at SiBiO2 interfaces. <i>Physical Review B</i> , 2000 , 62, R16326-R16329	3.3	54
69	Number of independent partial structure factors for a disordered n-component system. <i>Physical Review B</i> , 1999 , 59, 5-7	3.3	17
68	Network transformation processes during oxidation of silicon. <i>Microelectronic Engineering</i> , 1999 , 48, 89-94	2.5	4
67	Intermediate Range Order and Bonding Character in Disordered Network-Forming Systems. <i>Journal of the American Chemical Society</i> , 1999 , 121, 2943-2944	16.4	57
66	Interface structure between silicon and its oxide by first-principles molecular dynamics. <i>Nature</i> , 1998 , 396, 58-60	50.4	209
65	Dynamics of structural relaxation upon Rydberg excitation of an impurity in an Ar crystal. <i>Chemical Physics</i> , 1998 , 233, 343-352	2.3	32
64	A first principles study of small Cun clusters based on local-density and generalized-gradient approximations to density functional theory. <i>Computational Materials Science</i> , 1998 , 10, 463-467	3.2	7

63	Fully Unconstrained Approach to Noncollinear Magnetism: Application to Small Fe Clusters. <i>Physical Review Letters</i> , 1998 , 80, 3622-3625	7.4	291
62	Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica. <i>Physical Review Letters</i> , 1998 , 80, 5145-5147	7.4	337
61	Core-Level Shifts in Si(001)-SiO2 Systems: The Value of First-Principle Investigations 1998 , 89-102		5
60	Structural and electronic properties of small Cun clusters using generalized-gradient approximations within density functional theory. <i>Journal of Chemical Physics</i> , 1998 , 109, 6626-6630	3.9	74
59	Structure of liquid GexSe1 at the stiffness threshold composition. <i>Physical Review B</i> , 1998 , 58, R14661	-B _{.15} 466	54 ₁
58	Microscopic Structure of Liquid GeSe2: The Problem of Concentration Fluctuations over Intermediate Range Distances. <i>Physical Review Letters</i> , 1998 , 80, 2342-2345	7.4	72
57	Dynamic structure factor of vitreous silica from first principles: Comparison to neutron-inelastic-scattering experiments. <i>Physical Review B</i> , 1998 , 57, 14133-14140	3.3	88
56	Cu++ and Li+ interaction with polyethylene oxide by ab initio molecular dynamics. <i>Journal of Chemical Physics</i> , 1998 , 108, 9933-9936	3.9	15
55	Density-functional perturbation theory for lattice dynamics with ultrasoft pseudopotentials. <i>Physical Review B</i> , 1997 , 56, R11369-R11372	3.3	63
54	Nitrogen Incorporation at Si(001)BiO2 Interfaces: Relation between N 1s Core-Level Shifts and Microscopic Structure. <i>Physical Review Letters</i> , 1997 , 79, 5174-5177	7.4	122
53	Structure and Hyperfine Parameters of E1? Centers in EQuartz and in Vitreous SiO2. <i>Physical Review Letters</i> , 1997 , 78, 887-890	7.4	194
52	Origin of the High-Frequency Doublet in the Vibrational Spectrum of Vitreous SiO2. <i>Science</i> , 1997 , 275, 1925-7	33.3	121
51	Dynamical Charge Tensors and Infrared Spectrum of Amorphous SiO2. <i>Physical Review Letters</i> , 1997 , 1766-1769	7.4	133
50	First-principles study of Si 2p core-level shifts at water and hydrogen covered Si(001)2¶ surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 2809		18
49	Si 2p core-level shifts in small molecules: a first principles study. <i>Physica Scripta</i> , 1996 , T66, 118-120	2.6	17
48	Generalized-gradient approximations to density-functional theory: A comparative study for atoms and solids. <i>Physical Review B</i> , 1996 , 53, 1180-1185	3.3	204
47	Theory of Si 2p core-level shifts at the Si(001)-SiO2 interface. <i>Physical Review B</i> , 1996 , 53, 10942-10950	3.3	200
46	Structurally relaxed models of the Si(001)BiO2 interface. <i>Applied Physics Letters</i> , 1996 , 68, 625-627	3.4	104

45	Comparison of structurally relaxed models of the Si(001)-SiO2 interface based on different crystalline oxide forms. <i>Applied Surface Science</i> , 1996 , 104-105, 317-322	6.7	44
44	FIRST-PRINCIPLES STUDIES OF Cu CLUSTERS. Surface Review and Letters, 1996 , 03, 287-291	1.1	1
43	Spherosiloxane H8Si8O12 clusters on Si(001): First-principles calculation of Si 2p core-level shifts. <i>Physical Review B</i> , 1996 , 54, R2339-R2342	3.3	38
42	Interpretation of photoelectron spectra in Cun - clusters including thermal and final-state effects: The case of Cu7 <i>Physical Review B</i> , 1996 , 54, 8913-8918	3.3	25
41	Si 2p core-level shifts at the Si(001)-SiO2 interface: A first-principles study. <i>Physical Review Letters</i> , 1995 , 74, 1024-1027	7.4	174
40	Model of vitreous SiO2 generated by an ab initio molecular-dynamics quench from the melt. <i>Physical Review B</i> , 1995 , 52, 12690-12695	3.3	163
39	First principles study of photoelectron spectra of Cun-clusters. <i>Physical Review Letters</i> , 1995 , 75, 2104-	2] 1. Q 7	61
38	Structural and electronic properties of liquid and amorphous SiO2: An ab initio molecular dynamics study. <i>Physical Review Letters</i> , 1995 , 74, 4682-4685	7.4	251
37	Structural and electronic properties of small copper clusters: a first principles study. <i>Chemical Physics Letters</i> , 1995 , 238, 215-221	2.5	87
36	Infrared absorption frequencies and oscillator strengths of acceptors confined in GaAs/AlGaAs quantum wells. <i>Applied Physics Letters</i> , 1994 , 65, 3365-3367	3.4	3
35	Infrared-absorption spectra of acceptors confined in GaAs/AlxGa1-xAs quantum wells in the presence of an external magnetic field. <i>Physical Review B</i> , 1994 , 50, 10953-10957	3.3	7
34	Magnetism of carbon clusters. <i>Physical Review B</i> , 1994 , 50, 16459-16463	3.3	51
33	Magneto-optical studies of acceptors confined in GaAs/AlxGa1-xAs quantum wells. <i>Physical Review B</i> , 1994 , 50, 4901-4904	3.3	2
32	Magnetic properties of the S-like bound hole states in GaAs/AlxGa1-xAs quantum wells. <i>Physical Review B</i> , 1994 , 49, 10794-10797	3.3	9
31	First principles molecular dynamics calculation of the structure and acidity of a bulk zeolite. <i>Chemical Physics Letters</i> , 1994 , 226, 245-250	2.5	41
30	Theoretical calculations of shallow acceptor states in GaAs/AlxGa1-xAs quantum wells in the presence of an external magnetic field. <i>Physical Review B</i> , 1994 , 50, 2393-2398	3.3	16
29	Diffusion mechanism of Cu adatoms on a Cu(001) surface. Surface Science, 1994 , 306, L575-L578	1.8	54
28	Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. <i>Physical Review B</i> , 1993 , 47, 10142-10153	3.3	1181

27 Ab initio molecular dynamics: application to liquid copper. Computational Materials Science, 1993, 1, 419-427

Ring currents in topologically complex molecules: Application to C60, C7 Physical Review A, 1993 , 47, 1783-1789	'0, and their hexa-anions.	2.6	96
Application of variational techniques to time-dependent perturbation the 1993 , 48, 5090-5094	neory. <i>Physical Review B</i> ,	3.3	4
24 Effective-State Approach to Second-Order Perturbation Theory. <i>Europh</i> y	vsics Letters, 1992 , 17, 387-392	1.6	4
Hole subbands in quantum wells: Comparison between theory and hot-electron-acceptor-luminescence experiments. <i>Physical Review B</i> , 199	92 , 46, 2625-2627	3.3	6
Ring currents in icosahedral c60. <i>Science</i> , 1992 , 257, 1660-1		33.3	122
Ab initio molecular dynamics for d-electron systems: Liquid copper at 15 <i>Letters</i> , 1992 , 69, 1982-1985	00 K. Physical Review	7.4	333
High exciton binding energies in GaAs/GaAlAs quantum wells. <i>Superlatti</i> 1991 , 9, 1-4	ces and Microstructures,	2.8	4
Excitonic effects on the two-photon transition rate in quantum wells. <i>Su Microstructures</i> , 1991 , 9, 157-160	perlattices and	2.8	8
Polarization dependence of two-photon transitions in quantum wells. No Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Pr		342	1
17 Complex Pattern of Impurity States in Shallow Semiconductor Quantum 1991, 15, 447-451	Wells. Europhysics Letters,	1.6	1
Variational calculation of Fano linewidth: Application to excitons in quan <i>B</i> , 1991 , 44, 3162-3167	ntum wells. <i>Physical Review</i>	3.3	14
Infrared transitions between shallow acceptor states in GaAs-Ga1-xAlxA Review B, 1991 , 44, 1118-1127	s quantum wells. <i>Physical</i>	3.3	20
Shallow Impurities in GaAs-Ga1-xAlxAs Quantum Wells. <i>Physica Scripta</i> , 1	991 , T39, 182-187	2.6	1
Polarization dependence of multiphoton transitions. <i>Physical Review B</i> , 1	1991 , 43, 3837-3846	3.3	15
Binding energies of ground and excited states of shallow acceptors in Gawells. <i>Physical Review B</i> , 1990 , 42, 5349-5352	aAs/Ga1-xAlxAs quantum	3.3	26
11 Two-photon transitions to excitons in quantum wells. <i>Physical Review B</i> ,	1990 , 42, 9073-9079	3.3	17
10 Interpretation of three-photon spectra in alkali halides. <i>Physical Review I</i>	B, 1990 , 41, 12230-12235	3.3	9

LIST OF PUBLICATIONS

9	9	Comment on "Effect of biaxial strain on acceptor-level energies in InyGa1-yAs/AlxGa1-xAs (on GaAs) quantum wells". <i>Physical Review B</i> , 1990 , 42, 7641-7642	3.3	4	
8	3	Effect of continuum states on two-photon absorption in quantum wells. <i>Physical Review B</i> , 1990 , 41, 12728-12734	3.3	9	
7	7	Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells. <i>Physical Review B</i> , 1990 , 42, 8928-8938	3.3	336	
6	5	One-dimensional random potentials allowing for extended states. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 9509-9512	1.8	7	
5	5	Theory of excitons in GaAs?Ga1⊠AlxAs quantum wells including valence band mixing. <i>Superlattices and Microstructures</i> , 1989 , 5, 59-63	2.8	22	
4	1	Binding energies of excited shallow acceptor states in GaAs/Ga1-xAlxAs quantum wells. <i>Physical Review B</i> , 1989 , 40, 5602-5612	3.3	52	
3	3	Gauge-invariant two-photon transitions in quantum wells. <i>Physical Review B</i> , 1988 , 38, 6206-6210	3.3	40	
2	2	Effect of Subband Coupling on Exciton Binding Energies and Oscillator Strengths in GaAs-Ga 1- x Al x As Quantum Wells. <i>Europhysics Letters</i> , 1988 , 6, 259-264	1.6	74	
1	Ĺ	Hole subbands in strained GaAs-Ga1-xAlxAs quantum wells: Exact solution of the effective-mass equation. <i>Physical Review B</i> , 1987 , 36, 5887-5894	3.3	216	