Anna Flis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6770281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8872-8877.	3.3	340
2	Arabidopsis Coordinates the Diurnal Regulation of Carbon Allocation and Growth across a Wide Range of Photoperiods. Molecular Plant, 2014, 7, 137-155.	3.9	244
3	Multiscale digital <i>Arabidopsis</i> predicts individual organ and whole-organism growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4127-36.	3.3	88
4	Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day. Plant Physiology, 2017, 174, 2199-2212.	2.3	80
5	Regulatory Properties of ADP Glucose Pyrophosphorylase Are Required for Adjustment of Leaf Starch Synthesis in Different Photoperiods Â. Plant Physiology, 2014, 166, 1733-1747.	2.3	78
6	Cellulose Synthesis and Cell Expansion Are Regulated by Different Mechanisms in Growing Arabidopsis Hypocotyls. Plant Cell, 2017, 29, 1305-1315.	3.1	67
7	Photoperiodâ€dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in <i>Arabidopsis</i> . Plant, Cell and Environment, 2016, 39, 1955-1981.	2.8	60
8	Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: a computational model. Molecular BioSystems, 2014, 10, 613-627.	2.9	55
9	Parallel analysis of <i>Arabidopsis</i> circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biology, 2017, 7, 160333.	1.5	52
10	Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. Plant, Cell and Environment, 2019, 42, 549-573.	2.8	49
11	Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biology, 2015, 5, 150042.	1.5	42
12	Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement. Plant Physiology, 2017, 174, 1949-1968.	2.3	39
13	The <i>Arabidopsis</i> Framework Model version 2 predicts the organism-level effects of circadian clock gene mis-regulation. In Silico Plants, 2022, 4,	0.8	2