
Srijan Aggarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6770200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Outdoor and indoor concentrations of size-resolved particulate matter during a wildfire episode in interior Alaska and the impact of ventilation. Air Quality, Atmosphere and Health, 2022, 15, 149-158.	1.5	3
2	Symbiotic Engineering: A Novel Approach for Environmental Remediation. ACS ES&T Engineering, 2022, 2, 606-616.	3.7	1
3	Modeling and Evaluating Beneficial Matches between Excess Renewable Power Generation and Non-Electric Heat Loads in Remote Alaska Microgrids. Sustainability, 2022, 14, 3884.	1.6	1
4	Optimizing demand response of a modular water reuse system in a remote Arctic microgrid. Journal of Cleaner Production, 2022, 346, 131110.	4.6	5
5	From Metrics to Action: A Framework for Identifying Limiting Factors, Key Causes, and Possible Solutions in Food-Energy-Water Security. Frontiers in Climate, 2022, 4, .	1.3	0
6	Pb(<scp>ii</scp>) adsorption from aqueous solution by an aluminum-based metal organic framework–graphene oxide nanocomposite. Materials Advances, 2021, 2, 3051-3059.	2.6	8
7	Applying the food–energy–water nexus concept at the local scale. Nature Sustainability, 2021, 4, 672-679.	11.5	48
8	A Tale of Two Communities: Adopting and Paying for an In-Home Non-Potable Water Reuse System in Rural Alaska. ACS ES&T Water, 2021, 1, 1807-1815.	2.3	9
9	Implications of inadequate water and sanitation infrastructure for community spread of COVID-19 in remote Alaskan communities. Science of the Total Environment, 2021, 776, 145842.	3.9	21
10	Use of immobilized bacteria for environmental bioremediation: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105920.	3.3	93
11	Enrichment of psychrophilic and acidophilic sulfate-reducing bacterial consortia – a solution toward acid mine drainage treatment in cold regions. Environmental Sciences: Processes and Impacts, 2021, 23, 2007-2020.	1.7	6
12	Rapid immobilization of viable Bacillus pseudomycoides in polyvinyl alcohol/glutaraldehyde hydrogel for biological treatment of municipal wastewater. Environmental Science and Pollution Research, 2020, 27, 9167-9180.	2.7	32
13	Water quality and associated microbial ecology in selected Alaska Native communities: Challenges in off-the-grid water supplies. Science of the Total Environment, 2020, 711, 134450.	3.9	6
14	Adsorptive Removal of Se(IV) by Citrus Peels: Effect of Adsorbent Entrapment in Calcium Alginate Beads. ACS Omega, 2020, 5, 17215-17222.	1.6	20
15	Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chemical Engineering Journal, 2020, 397, 124596.	6.6	109
16	MicroFEWs: A Food–Energy–Water Systems Approach to Renewable Energy Decisions in Islanded Microgrid Communities in Rural Alaska. Environmental Engineering Science, 2019, 36, 843-849.	0.8	19
17	In-situ burning with chemical herders for Arctic oil spill response: Meta-analysis and review. Science of the Total Environment, 2019, 675, 705-716.	3.9	64
18	An Evaluation of MODIS-Retrieved Aerosol Optical Depth over AERONET Sites in Alaska. Remote Sensing, 2018, 10, 1384.	1.8	12

SRIJAN AGGARWAL

#	Article	IF	CITATIONS
19	Removal of Arsenic(III) from Aqueous Solution Using Metal Organic Framework-Graphene Oxide Nanocomposite. Nanomaterials, 2018, 8, 1062.	1.9	61
20	Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. Environmental Science & Technology, 2018, 52, 13077-13088.	4.6	42
21	Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. Journal of Environmental Management, 2018, 225, 62-74.	3.8	55
22	Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations. Journal of Environmental Management, 2017, 190, 266-273.	3.8	23
23	Aerial application of herding agents to advance in-situ burning for oil spill response in the Arctic: A pilot study. Cold Regions Science and Technology, 2017, 135, 97-104.	1.6	22
24	Mining-Related Selenium Contamination in Alaska, and the State of Current Knowledge. Minerals (Basel, Switzerland), 2017, 7, 46.	0.8	57
25	Environmental Partitioning of Herding Agents Used During an In-Situ Burning Field Study in Alaska. International Oil Spill Conference Proceedings, 2017, 2017, 2935-2954.	0.1	2
26	Ambient Air Quality in the Vicinity of a Herder Mediated In-Situ Burn Field Test in Alaska. International Oil Spill Conference Proceedings, 2017, 2017, 2017149.	0.1	2
27	Aerial Application of Herding Agents can Enhance In-Situ Burning in Partial Ice Cover. International Oil Spill Conference Proceedings, 2017, 2017, 2955-2975.	0.1	1
28	Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?. Microbiology Insights, 2015, 8s2, MBI.S31444.	0.9	28
29	Feasibility of using a particle counter or flow-cytometer for bacterial enumeration in the assimilable organic carbon (AOC) analysis method. Biodegradation, 2015, 26, 387-397.	1.5	7
30	Real-Time Prediction of Size-Resolved Ultrafine Particulate Matter on Freeways. Environmental Science & Technology, 2012, 46, 2234-2241.	4.6	14
31	Effect of Strain Rate on the Mechanical Properties ofStaphylococcus epidermidisBiofilms. Langmuir, 2012, 28, 2812-2816.	1.6	24
32	Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms. Biotechnology and Bioengineering, 2010, 105, 924-934.	1.7	43
33	Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method. Biofouling, 2010, 26, 479-486.	0.8	34