Hyeon Gyu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6770172/publications.pdf

Version: 2024-02-01

141 4,968 41 61 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids, 2010, 24, 619-625.	5.6	183
2	Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chemistry, 2015, 187, 525-529.	4.2	163
3	Microencapsulation of $\hat{l}\pm$ -tocopherol using sodium alginate and its controlled release properties. International Journal of Biological Macromolecules, 2006, 38, 25-30.	3.6	152
4	Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochemistry, 2009, 44, 490-493.	1.8	144
5	Antitumor activity of levan polysaccharides from selected microorganisms. International Journal of Biological Macromolecules, 2004, 34, 37-41.	3.6	137
6	Stability of Chitosan Nanoparticles for <scp>I</scp> -Ascorbic Acid during Heat Treatment in Aqueous Solution. Journal of Agricultural and Food Chemistry, 2008, 56, 1936-1941.	2.4	122
7	Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers, 2004, 56, 251-254.	5.1	121
8	Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Moench). Food Chemistry, 2006, 96, 36-42.	4.2	114
9	Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International, 2019, 122, 566-572.	2.9	110
10	Viscometric behavior of high-methoxy and low-methoxy pectin solutions. Food Hydrocolloids, 2006, 20, 62-67.	5.6	94
11	Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 2010, 101, 5414-5418.	4.8	93
12	Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch. International Journal of Biological Macromolecules, 2018, 108, 568-575.	3.6	86
13	Effect of partially hydrolyzed oat \hat{l}^2 -glucan on the weight gain and lipid profile of mice. Food Hydrocolloids, 2009, 23, 2016-2021.	5.6	82
14	PURIFICATION AND CHARACTERIZATION OF ANTIOXIDANT PEPTIDES FROM SOY PROTEIN HYDROLYSATE. Journal of Food Biochemistry, 0, 34, 120-132.	1.2	78
15	Evaluation of Bitterness in Enzymatic Hydrolysates of Soy Protein Isolate by Taste Dilution Analysis. Journal of Food Science, 2008, 73, S41-6.	1.5	71
16	Rheological characterization of levan polysaccharides from Microbacterium laevaniformans. International Journal of Biological Macromolecules, 2008, 42, 10-13.	3.6	68
17	Rice noodle enriched with okara: Cooking property, texture, and in vitro starch digestibility. Food Bioscience, 2018, 22, 178-183.	2.0	67
18	Dâ€Psicose, a Sweet Monosaccharide, Ameliorate Hyperglycemia, and Dyslipidemia in C57BL/6Jâ€, <i>db/db</i> â€,Mice. Journal of Food Science, 2010, 75, H49-53.	1.5	63

#	Article	IF	CITATIONS
19	Purification and identification of adipogenesis inhibitory peptide from black soybean protein hydrolysate. Peptides, 2007, 28, 2098-2103.	1.2	62
20	Structural and Biological Characterization of Aminated-Derivatized Oat \hat{l}^2 -Glucan. Journal of Agricultural and Food Chemistry, 2005, 53, 5554-5558.	2.4	61
21	$(1-3)(1-6)-\hat{l}^2$ -Glucan-enriched materials from <i>Lentinus edodes</i> mushroom as a high-fibre and low-calorie flour substitute for baked foods. Journal of the Science of Food and Agriculture, 2011, 91, 1915-1919.	1.7	58
22	Effect of levan's branching structure on antitumor activity. International Journal of Biological Macromolecules, 2004, 34, 191-194.	3.6	55
23	Structural and Biological Characterization of Sulfated-Derivatized Oat \hat{I}^2 -Glucan. Journal of Agricultural and Food Chemistry, 2006, 54, 3815-3818.	2.4	55
24	Effects of \hat{l} ±-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydrate Polymers, 2006, 63, 347-354.	5.1	55
25	Single Walled Carbon Nanotube-Based Junction Biosensor for Detection of Escherichia coli. PLoS ONE, 2014, 9, e105767.	1.1	55
26	Effect of hydrocolloid coatings on the heat transfer and oil uptake during frying of potato strips. Journal of Food Engineering, 2011, 102, 317-320.	2.7	53
27	Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and \hat{l}^3 -poly (glutamic acid). Colloids and Surfaces B: Biointerfaces, 2016, 147, 224-233.	2.5	53
28	Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids and Surfaces B: Biointerfaces, 2017, 154, 171-177.	2.5	53
29	Chitosan/poly-l̂³-glutamic acid nanoparticles improve the solubility of lutein. International Journal of Biological Macromolecules, 2016, 85, 9-15.	3.6	52
30	Characterization of yeasts isolated from kefir as a probiotic and its synergic interaction with the wine byproduct grape seed flour/extract. LWT - Food Science and Technology, 2018, 90, 535-539.	2.5	52
31	Antiobesity Effect of Exopolysaccharides Isolated from Kefir Grains. Journal of Agricultural and Food Chemistry, 2017, 65, 10011-10019.	2.4	48
32	InÂvitro starch digestibility of noodles with various cereal flours and hydrocolloids. LWT - Food Science and Technology, 2015, 63, 122-128.	2.5	47
33	Effect of enzymatic hydrolysis on cholesterol-lowering activity of oat \hat{l}^2 -glucan. New Biotechnology, 2010, 27, 85-88.	2.4	46
34	Characteristics and Antioxidant Activity of Elsholtzia splendens Extract-Loaded Nanoparticles. Journal of Agricultural and Food Chemistry, 2010, 58, 3316-3321.	2.4	46
35	Enhancement of anti-radical activity of pectin from apple pomace by hydroxamation. Food Hydrocolloids, 2011, 25, 545-548.	5.6	46
36	In vitro starch digestion and cake quality: Impact of the ratio of soluble and insoluble dietary fiber. International Journal of Biological Macromolecules, 2014, 63, 98-103.	3.6	46

#	Article	IF	Citations
37	Antihypertensive effect of Korean Red Ginseng by enrichment ofÂginsenoside Rg3 and arginine–fructose. Journal of Ginseng Research, 2016, 40, 237-244.	3.0	46
38	Correlation of branching structure of mushroom \hat{l}^2 -glucan with its physiological activities. Food Research International, 2013, 51, 195-200.	2.9	44
39	Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids and Surfaces B: Biointerfaces, 2015, 130, 93-100.	2.5	44
40	Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch. International Journal of Biological Macromolecules, 2018, 107, 1235-1241.	3.6	44
41	Effects of selective oxidation of chitosan on physical and biological properties. International Journal of Biological Macromolecules, 2005, 35, 27-31.	3.6	43
42	Preparation and characterization of calcium pectinate gel beads entrapping catechin-loaded liposomes. International Journal of Biological Macromolecules, 2008, 42, 178-184.	3.6	42
43	Structural and Biological Study of CarboxymethylatedPhellinus linteusPolysaccharides. Journal of Agricultural and Food Chemistry, 2007, 55, 3368-3372.	2.4	41
44	Physicochemical and Hypocholesterolemic Characterization of Oxidized Oat \hat{I}^2 -Glucan. Journal of Agricultural and Food Chemistry, 2009, 57, 439-443.	2.4	41
45	Effect of the degree of sulfation on the physicochemical and biological properties of Pleurotus eryngii polysaccharides. Food Hydrocolloids, 2011, 25, 1291-1295.	5.6	41
46	Chemical composition and physicochemical properties of barley dietary fiber by chemical modification. International Journal of Biological Macromolecules, 2013, 60, 360-365.	3.6	40
47	Enzymatic Process for High-Yield Turanose Production and Its Potential Property as an Adipogenesis Regulator. Journal of Agricultural and Food Chemistry, 2016, 64, 4758-4764.	2.4	39
48	Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique. Food Science and Biotechnology, 2016, 25, 1337-1343.	1.2	38
49	Catechin-loaded calcium pectinate microparticles reinforced with liposome and hydroxypropylmethylcellulose: Optimization and in vivo antioxidant activity. Food Hydrocolloids, 2009, 23, 2226-2233.	5.6	37
50	Effect of the degree of enzymatic hydrolysis on the physicochemical properties and in vitro digestibility of rice starch. Food Science and Biotechnology, 2010, 19, 1333-1340.	1.2	37
51	Structural Characteristics of Pumpkin Pectin Extracted by Microwave Heating. Journal of Food Science, 2012, 77, C1169-73.	1.5	37
52	Nanoencapsulation of Red Ginseng Extracts Using Chitosan with Polyglutamic Acid or Fucoidan for Improving Antithrombotic Activities. Journal of Agricultural and Food Chemistry, 2016, 64, 4765-4771.	2.4	37
53	InÂvitro potential of phenolic phytochemicals from black rice on starch digestibility and rheological behaviors. Journal of Cereal Science, 2016, 70, 214-220.	1.8	37
54	Antiobesity Effect of Prebiotic Polyphenol-Rich Grape Seed Flour Supplemented with Probiotic Kefir-Derived Lactic Acid Bacteria. Journal of Agricultural and Food Chemistry, 2018, 66, 12498-12511.	2.4	37

#	Article	IF	CITATIONS
55	Effect of Lentinus edodes \hat{I}^2 -Glucan-Enriched Materials on the Textural, Rheological, and Oil-Resisting Properties of Instant Fried Noodles. Food and Bioprocess Technology, 2013, 6, 553-560.	2.6	36
56	Complexation of high amylose rice starch and hydrocolloid through dry heat treatment: Physical property and inÂvitro starch digestibility. Journal of Cereal Science, 2018, 79, 341-347.	1.8	36
57	Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT - Food Science and Technology, 2019, 101, 138-144.	2.5	35
58	Effect of sulfation on the physicochemical and biological properties of citrus pectins. Food Hydrocolloids, 2009, 23, 1980-1983.	5.6	34
59	Characteristics and antioxidant activity of catechin-loaded calcium pectinate gel beads prepared by internal gelation. Colloids and Surfaces B: Biointerfaces, 2009, 74, 17-22.	2.5	33
60	Release Properties and Cellular Uptake in Caco-2 Cells of Size-Controlled Chitosan Nanoparticles. Journal of Agricultural and Food Chemistry, 2017, 65, 10899-10906.	2.4	33
61	Dietetic and hypocholesterolaemic action of black soy peptide in dietary obese rats. Journal of the Science of Food and Agriculture, 2007, 87, 908-913.	1.7	32
62	Rheological and gelation properties of rice starch modified with 4-α-glucanotransferase. International Journal of Biological Macromolecules, 2008, 42, 298-304.	3.6	31
63	Improved Quantitative Analysis of Oligosaccharides from Lichenase-Hydrolyzed Water-Soluble Barley β-Glucans by High-Performance Anion-Exchange Chromatography. Journal of Agricultural and Food Chemistry, 2007, 55, 1656-1662.	2.4	30
64	Resveratrol-loaded chitosanâ \in " \hat{I}^3 -poly(glutamic acid) nanoparticles: Optimization, solubility, UV stability, and cellular antioxidant activity. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110702.	2.5	30
65	The effect of chemicallyâ€modified resistant starch, RS typeâ€4, on body weight and blood lipid profiles of high fat dietâ€induced obese mice. Starch/Staerke, 2012, 64, 78-85.	1.1	29
66	The effects of particle size on the physicochemical properties of optimized astaxanthin-rich Xanthophyllomyces dendrorhous-loaded microparticles. LWT - Food Science and Technology, 2014, 55, 638-644.	2.5	29
67	Influence of arabic gum on in vitro starch digestibility and noodle-making quality of Segoami. International Journal of Biological Macromolecules, 2019, 125, 668-673.	3.6	27
68	Characteristics of enzymatically-deesterified pectin gels produced in the presence of monovalent ionic salts. Food Hydrocolloids, 2009, 23, 1926-1929.	5.6	26
69	Preparation, Characteristics, and Stability of Glutathione-Loaded Nanoparticles. Journal of Agricultural and Food Chemistry, 2011, 59, 11264-11269.	2.4	26
70	Stabilization of Black Soybean Anthocyanin by Chitosan Nanoencapsulation and Copigmentation. Journal of Food Biochemistry, 2017, 41, e12316.	1.2	26
71	Mucoadhesive Chitosan–Gum Arabic Nanoparticles Enhance the Absorption and Antioxidant Activity of Quercetin in the Intestinal Cellular Environment. Journal of Agricultural and Food Chemistry, 2019, 67, 8609-8616.	2.4	26
72	Optimization of calcium pectinate gel beads for sustained-release of catechin using response surface methodology. International Journal of Biological Macromolecules, 2008, 42, 340-347.	3.6	25

#	Article	IF	Citations
73	α-Tocopherol-loaded Ca-pectinate microcapsules: Optimization, in vitro release, and bioavailability. Colloids and Surfaces B: Biointerfaces, 2009, 73, 394-398.	2.5	25
74	Isolation of an Exopolysaccharide-producing Bacterium, Sphingomonassp. CS101, Which Forms an Unusual Type of Sphingan. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1146-1148.	0.6	24
75	PHYSICOCHEMICAL, TEXTURAL AND NOODLEâ€MAKING PROPERTIES OF WHEAT DOUGH CONTAINING ALGINATE. Journal of Texture Studies, 2008, 39, 393-404.	1.1	24
76	Encapsulation of astaxanthin-rich Xanthophyllomyces dendrorhous for antioxidant delivery. International Journal of Biological Macromolecules, 2011, 49, 268-273.	3.6	24
77	Antioxidative activity and structural stability of microencapsulated \hat{I}^3 -oryzanol in heat-treated lards. Food Chemistry, 2007, 100, 1065-1070.	4.2	23
78	Chitosan-Tripolyphosphate Nanoparticles Prepared by Ionic Gelation Improve the Antioxidant Activities of Astaxanthin in the In Vitro and In Vivo Model. Antioxidants, 2022, 11, 479.	2.2	23
79	Effect of Surface Layer Proteins Derived from Paraprobiotic Kefir Lactic Acid Bacteria on Inflammation and High-Fat Diet-Induced Obesity. Journal of Agricultural and Food Chemistry, 2021, 69, 15157-15164.	2.4	23
80	Antioxidative Activity of Microencapsulated \hat{I}^3 -Oryzanol on High Cholesterol-Fed Rats. Journal of Agricultural and Food Chemistry, 2005, 53, 9747-9750.	2.4	22
81	Ascorbyl palmitate-loaded chitosan nanoparticles: Characteristic and polyphenol oxidase inhibitory activity. Colloids and Surfaces B: Biointerfaces, 2013, 103, 391-394.	2.5	22
82	Characterization of apple dietary fibers influencing the inÂvitro starch digestibility of wheat flour gel. LWT - Food Science and Technology, 2016, 65, 158-163.	2.5	22
83	Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility. Food Science and Biotechnology, 2017, 26, 1415-1422.	1.2	22
84	Preparation and Characterization of Mucoadhesive Buccal Nanoparticles Using Chitosan and Dextran Sulfate. Journal of Agricultural and Food Chemistry, 2016, 64, 5384-5388.	2.4	21
85	Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles. Food Science and Biotechnology, 2018, 27, 441-450.	1.2	20
86	Effect of the degree of oxidation on the physicochemical and biological properties of Grifola frondosa polysaccharides. Carbohydrate Polymers, 2011, 83, 1298-1302.	5.1	19
87	Substituting whole grain flour for wheat flour: Impact on cake quality and glycemic index. Food Science and Biotechnology, 2013, 22, 1-7.	1.2	19
88	Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers. Carbohydrate Polymers, 2021, 267, 118157.	5.1	19
89	Development and comparison of a porcine gelatin detection system targeting mitochondrial markers for Halal authentication. LWT - Food Science and Technology, 2018, 97, 697-702.	2.5	18
90	Evaluation of wheat gluten hydrolysates as taste-active compounds with antioxidant activity. Journal of Food Science and Technology, 2014, 51, 535-542.	1.4	17

#	Article	IF	Citations
91	Impact of Buckwheat Flavonoids on In Vitro Starch Digestibility and Noodleâ€Making Properties. Cereal Chemistry, 2016, 93, 299-305.	1.1	17
92	Preparation and Characterization of Mucoadhesive Nanoparticles for Enhancing Cellular Uptake of Coenzyme Q10. Journal of Agricultural and Food Chemistry, 2017, 65, 8930-8937.	2.4	17
93	Antimicrobial and indicator properties of edible film containing clove bud oil-loaded chitosan capsules and red cabbage for fish preservation. International Journal of Biological Macromolecules, 2022, 196, 163-171.	3. 6	17
94	Evaluation of biological activities of the short-term fermented soybean extract. Food Science and Biotechnology, 2013, 22, 973-978.	1.2	16
95	PARTICLE SIZE EFFECT OF <i>LENTINUS EDODES</i> MUSHROOM (CHAMSONGâ€) POWDER ON THE PHYSICOCHEMICAL, RHEOLOGICAL, AND OILâ€RESISTING PROPERTIES OF FRYING BATTERS. Journal of Texture Studies, 2010, 41, 381-395.	1.1	15
96	Combination of Whole Grapeseed Flour and Newly Isolated Kefir Lactic Acid Bacteria Reduces Highâ€Fatâ€Induced Hepatic Steatosis. Molecular Nutrition and Food Research, 2019, 63, e1801040.	1.5	15
97	Effect of different chemical modification on the physicochemical properties of fiber-enriched polysaccharides isolated from wholegrain rice and buckwheat. Food Science and Biotechnology, 2014, 23, 1469-1475.	1.2	14
98	Utilisation of preharvest dropped apple peels as a flour substitute for a lower glycaemic index and higher fibre cake. International Journal of Food Sciences and Nutrition, 2014, 65, 62-68.	1.3	14
99	Dielectrophoresis-based microwire biosensor for rapid detection of Escherichia coli K-12 in ground beef. LWT - Food Science and Technology, 2020, 132, 109230.	2.5	14
100	Optimization, in vitro release and bioavailability of \hat{I}^3 -oryzanol-loaded calcium pectinate microparticles reinforced with chitosan. New Biotechnology, 2010, 27, 368-373.	2.4	13
101	Effect of oat \hat{l}^2 -glucan and its oxidised derivative on the quality characteristics of sponge cake. International Journal of Food Science and Technology, 2011, 46, 2663-2668.	1.3	13
102	Influence of storage temperature and autoclaving cycles on slowly digestible and resistant starch (RS) formation from partially debranched rice starch. Starch/Staerke, 2013, 65, 694-701.	1,1	13
103	Classification of hydrocolloids based on in vitro starch digestibility and rheological properties of Segoami gel. International Journal of Biological Macromolecules, 2017, 104, 442-448.	3.6	13
104	Î ³ -Oryzanol-loaded calcium pectinate microparticles reinforced with chitosan: Optimization and release characteristics. Colloids and Surfaces B: Biointerfaces, 2009, 70, 213-217.	2.5	12
105	Optimization and oxidative stability of the microencapsulated conjugated linoleic acid. International Journal of Biological Macromolecules, 2009, 45, 348-351.	3.6	12
106	Synergistic antimicrobial properties of nanoencapsulated clove oil and thymol against oral bacteria. Food Science and Biotechnology, 2020, 29, 1597-1604.	1.2	12
107	Effects of kefir lactic acid bacteria-derived postbiotic components on high fat diet-induced gut microbiota and obesity. Food Research International, 2022, 157, 111445.	2.9	12
108	Nanoencapsulation of synergistic antioxidant fruit and vegetable concentrates and their stability during <i>in vitro</i> digestion. Journal of the Science of Food and Agriculture, 2020, 100, 1056-1063.	1.7	11

#	Article	IF	CITATIONS
109	Physicochemical Properties and Biological Activities of DEAE-DerivatizedSphingomonasGellan. Journal of Agricultural and Food Chemistry, 2005, 53, 6235-6239.	2.4	9
110	Estrogenic effects of various extracts from Chamdanggui (Angelica gigas Nakai) and sogdan (Phlomis) Tj ETQq0	0 Q rgBT /	'Ovgrlock 10 T
111	Combined Effect of Protease and Phytase on the Solubility of Modified Soy Protein. Journal of Food Biochemistry, 2013, 37, 511-519.	1.2	9
112	Utilization of preharvest-dropped apple powder as an oil barrier for instant fried noodles. LWT - Food Science and Technology, 2013, 53, 88-93.	2.5	9
113	Microencapsulation of catechin with high loading and encapsulation efficiencies using soaking methods. Food Science and Biotechnology, 2015, 24, 1735-1739.	1.2	9
114	Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: polyglutamic acid and fucoidan. Journal of Ginseng Research, 2021, 45, 236-245.	3.0	9
115	Preparation of dietary fibreâ€enriched materials from preharvest dropped apples and their utilisation as a highâ€fibre flour substitute. Journal of the Science of Food and Agriculture, 2013, 93, 1974-1978.	1.7	8
116	Antioxidant and Synergistic Activities of Fruit and Vegetable Concentrates. Korean Journal of Food Science and Technology, 2015, 47, 240-245.	0.0	8
117	Physicochemical and rheological properties of starches substituted with type 4 resistant starch (crossâ€linked corn starch). Starch/Staerke, 2014, 66, 468-474.	1.1	6
118	Physicochemical properties and cell permeation efficiency of l-ascorbic acid loaded nanoparticles prepared with N-trimethyl chitosan and N-triethyl chitosan. Food Science and Biotechnology, 2014, 23, 1867-1874.	1,2	6
119	Effect of modified dietary fiber extracted from wholegrain wheat on the physicochemical and cake properties. Food Science and Biotechnology, 2016, 25, 477-482.	1.2	6
120	Comparative effects of slowly digestible and resistant starch from rice in high-fat diet-induced obese mice. Food Science and Biotechnology, 2016, 25, 1443-1448.	1,2	6
121	Effects of highâ€fiber rice Dodamssal (Oryza sativa L.) on glucose and lipid metabolism in mice fed a highâ€fat diet. Journal of Food Biochemistry, 2020, 44, e13231.	1.2	6
122	Effect of Modified Casein to Whey Protein Ratio on Dispersion Stability, Protein Quality and Body Composition in Rats. Food Science of Animal Resources, 2021, 41, 855-868.	1.7	6
123	Hypocholesterolemic Action of Fermented Brown Rice Supplement in Cholesterolâ€Fed Rats: Cholesterolâ€lowering Action of Fermented Brown Rice. Journal of Food Science, 2005, 70, s527.	1.5	5
124	Nanoencapsulation of synergistic combinations of acai berry concentrate to improve antioxidant stability. Food Science and Biotechnology, 2016, 25, 1597-1603.	1,2	5
125	Whey Proteins-Fortified Milk with Adjusted Casein to Whey Proteins Ratio Improved Muscle Strength and Endurance Exercise Capacity without Lean Mass Accretion in Rats. Foods, 2022, 11, 574.	1.9	5
126	Physicochemical and biological characteristics of DEAE-derivatized PS7 biopolymer of Beijerinckia indica. International Journal of Biological Macromolecules, 2007, 41, 141-145.	3.6	4

#	Article	IF	CITATIONS
127	Response surface optimization of \hat{l}^2 -glucan extraction from cauliflower mushrooms (Sparassis crispa). Food Science and Biotechnology, 2012, 21, 1031-1035.	1.2	4
128	Synergistic antiradical action of natural antioxidants and herbal mixture for preventing dioxin toxicity. Food Science and Biotechnology, 2012, 21, 491-496.	1.2	4
129	Effect of hydrocolloids on the pasting and rheological characteristics of resistant starch (type 4). Food Science and Biotechnology, 2012, 21, 769-774.	1.2	4
130	Suitability of TEMPO-oxidized oat \hat{l}^2 -glucan for noodle preparation. Food Science and Biotechnology, 2014, 23, 1897-1901.	1.2	4
131	Comparison of volatile release in hydrocolloid model systems containing original and regio selectively carboxylated \hat{l}^2 -glucans. Food Hydrocolloids, 2014, 39, 215-222.	5.6	4
132	Antistaling of rice starch in a gel model system and Korean rice cake: the role of wheat flour in retrogradation-retardation technology. Food Science and Biotechnology, 2014, 23, 781-786.	1.2	4
133	Hypoglycemic Effect of Dry Heat Treated Starch With Xanthan: An In Vitro and In Vivo Comparative Study. Starch/Staerke, 2018, 70, 1800088.	1.1	4
134	Finger Millet Ethanol Extracts Prevent Hypertension by Inhibiting the Angiotensin-Converting Enzyme Level and Enhancing the Antioxidant Capacity in Spontaneously Hypertensive Rats. Antioxidants, 2021, 10, 1766.	2.2	4
135	Optimization of Extraction Conditions for <i>Elsholtzia splendens </i> li>and Its Antioxidant Activity. Journal of Food Biochemistry, 2013, 37, 669-676.	1.2	3
136	Preparation of Black Hoof Medicinal Mushroom Phellinus linteus (Berk. et M.A. Curt.) Teng		