
Claudio Moser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6770100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE, 2007, 2, e1326.	1.1	945
2	An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature, 1994, 372, 635-641.	13.7	796
3	Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics, 2007, 8, 428.	1.2	216
4	Ripening and Genotype Control Stilbene Accumulation in Healthy Grapes. Journal of Agricultural and Food Chemistry, 2008, 56, 11773-11785.	2.4	170
5	Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO Journal, 2000, 19, 531-541.	3.5	145
6	Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. Frontiers in Plant Science, 2017, 8, 1093.	1.7	138
7	Cloning and characterization of small nonâ€eoding RNAs from grape. Plant Journal, 2009, 59, 750-763.	2.8	133
8	Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 2012, 13, 660.	1.2	132
9	Profiling of Resveratrol Oligomers, Important Stress Metabolites, Accumulating in the Leaves of Hybrid Vitis vinifera (Merzling × Teroldego) Genotypes Infected with Plasmopara viticola. Journal of Agricultural and Food Chemistry, 2011, 59, 5364-5375.	2.4	115
10	The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L BMC Genomics, 2012, 13, 243.	1.2	112
11	Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC Plant Biology, 2011, 11, 114.	1.6	103
12	Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. Journal of Experimental Botany, 2013, 64, 4403-4419.	2.4	102
13	New candidate genes for the fine regulation of the colour of grapes. Journal of Experimental Botany, 2015, 66, 4427-4440.	2.4	97
14	Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology, 1994, 87, 249-267.	2.0	89
15	The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC Plant Biology, 2014, 14, 87.	1.6	87
16	Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes. Experimental Brain Research, 2002, 143, 191-197.	0.7	83
17	The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the CTPase domain. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11339-11344.	3.3	82
18	Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir. Journal of Experimental Botany, 2012, 63, 6359-6369.	2.4	82

CLAUDIO MOSER

#	Article	IF	CITATIONS
19	X-ray Crystal Structure of Ferric Aplysia limacina Myoglobin in Different Liganded States. Journal of Molecular Biology, 1993, 233, 498-508.	2.0	78
20	Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 2015, 16, 28.	2.7	72
21	VESPUCCI: Exploring Patterns of Gene Expression in Grapevine. Frontiers in Plant Science, 2016, 7, 633.	1.7	65
22	Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. Journal of Experimental Botany, 2015, 66, 4441-4453.	2.4	58
23	The Rpv3-3 Haplotype and Stilbenoid Induction Mediate Downy Mildew Resistance in a Grapevine Interspecific Population. Frontiers in Plant Science, 2019, 10, 234.	1.7	58
24	The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany, 2016, 67, 3509-3522.	2.4	55
25	Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genomics, 2009, 10, 363.	1.2	54
26	Transcriptome Profiles of Strawberry (Fragaria vesca) Fruit Interacting With Botrytis cinerea at Different Ripening Stages. Frontiers in Plant Science, 2019, 10, 1131.	1.7	54
27	Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: Extending MapMan ontology for grapevine. BMC Plant Biology, 2009, 9, 104.	1.6	51
28	Isolation of Functional RNA From Small Amounts of Different Grape and Apple Tissues. Molecular Biotechnology, 2004, 26, 95-100.	1.3	47
29	Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L Functional and Integrative Genomics, 2005, 5, 208-217.	1.4	44
30	Molecular analysis of the early interaction between the grapevine flower and <scp><i>Botrytis cinerea</i></scp> reveals that prompt activation of specific host pathways leads to fungus quiescence. Plant, Cell and Environment, 2017, 40, 1409-1428.	2.8	44
31	Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacterium tumefaciens stable gene transfer. Scientific Reports, 2020, 10, 20155.	1.6	43
32	Identification and Characterization of the Defensin-Like Gene Family of Grapevine. Molecular Plant-Microbe Interactions, 2012, 25, 1118-1131.	1.4	38
33	Insights into the Role of the Berry-Specific Ethylene Responsive Factor VviERF045. Frontiers in Plant Science, 2016, 7, 1793.	1.7	38
34	Structural dynamics at the berry colour locus inVitis viniferaâ€L. somatic variants. Australian Journal of Grape and Wine Research, 2014, 20, 485-495.	1.0	32
35	Dual Transcriptome and Metabolic Analysis of Vitis vinifera cv. Pinot Noir Berry and Botrytis cinerea During Quiescence and Egressed Infection. Frontiers in Plant Science, 2019, 10, 1704.	1.7	26
36	Vv <scp>AMP</scp> 2, a grapevine flowerâ€specific defensin capable of inhibiting <i><scp>B</scp>otrytis cinerea</i> growth: insights into its mode of action. Plant Pathology, 2014, 63, 899-910.	1.2	20

CLAUDIO MOSER

#	Article	IF	CITATIONS
37	Discovering Causal Relationships in Grapevine Expression Data to Expand Gene Networks. A Case Study: Four Networks Related to Climate Change. Frontiers in Plant Science, 2018, 9, 1385.	1.7	17
38	Vitis OneGenE: A Causality-Based Approach to Generate Gene Networks in Vitis vinifera Sheds Light on the Laccase and Dirigent Gene Families. Biomolecules, 2021, 11, 1744.	1.8	16
39	Natural variation in stomatal dynamics drives divergence in heat stress tolerance and contributes to seasonal intrinsic water-use efficiency in <i>Vitis vinifera</i> (subsp. <i>sativa</i> and) Tj ETQq1 1 0.784314 rgB	T / D #erlock	2 10 Tf 50 6
40	The peach (<i>Prunus persica</i>) defensin PpDFN1 displays antifungal activity through specific interactions with the membrane lipids. Plant Pathology, 2013, 62, 393-403.	1.2	15
41	Applying generalized additive models to unravel dynamic changes in anthocyanin biosynthesis in methyl jasmonate elicited grapevine (Vitis vinifera cv. Gamay) cell cultures. Horticulture Research, 2017, 4, 17038.	2.9	15
42	Mining Grapevine Downy Mildew Susceptibility Genes: A Resource for Genomics-Based Breeding and Tailored Gene Editing. Biomolecules, 2021, 11, 181.	1.8	15
43	Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy Mildew. Biomolecules, 2022, 12, 182.	1.8	14
44	<i>Armillaria mellea</i> Induces a Set of Defense Genes in Grapevine Roots and One of Them Codifies a Protein with Antifungal Activity. Molecular Plant-Microbe Interactions, 2010, 23, 485-496.	1.4	13
45	NES2RA. International Journal of High Performance Computing Applications, 2018, 32, 380-392.	2.4	13
46	Classification of the Arabidopsis ERF gene family based on Bayesian Inference. Molecular Biology, 2009, 43, 729-734.	0.4	5
47	Discovering Candidates for Gene Network Expansion by Distributed Volunteer Computing. , 2015, , .		4
48	Bioactive Gibberellins Show Differential Abundance at Key Phenological Stages for Berry Growth in Table Grapes. American Journal of Enology and Viticulture, 2017, 68, 478-484.	0.9	4
49	Deletion of the 6-kDa subunit affects the activity and yield of the bc1 complex from Rhodovulum sulfidophilum. FEBS Journal, 2000, 267, 3753-3761.	0.2	3
50	Editorial: Interplay Between Fungal Pathogens and Fruit Ripening. Frontiers in Plant Science, 2020, 11, 275.	1.7	1
51	GENOMICS TOOLS FOR MARKER ASSISTED SELECTION IN GRAPEVINE. Acta Horticulturae, 2003, , 511-517.	0.1	1
52	Integrated approach for the molecular characterization of edited plants obtained via Agrobacterium tumefaciens-mediated gene transfer. European Food Research and Technology, 0, , 1.	1.6	1