Benjamin J W Mills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6769751/publications.pdf Version: 2024-02-01

RENIAMIN I W MILLS

#	Article	IF	CITATIONS
1	Background Earth system state amplified Carnian (Late Triassic) environmental changes. Earth and Planetary Science Letters, 2022, 578, 117321.	4.4	14
2	A short-lived oxidation event during the early Ediacaran and delayed oxygenation of the Proterozoic ocean. Earth and Planetary Science Letters, 2022, 577, 117274.	4.4	18
3	Assessing Volcanic Controls on Miocene Climate Change. Geophysical Research Letters, 2022, 49, e2021GL096519.	4.0	10
4	Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction. Global and Planetary Change, 2022, 209, 103731.	3.5	16
5	Earth's Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nature Geoscience, 2022, 15, 210-215.	12.9	26
6	A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Communications Earth & Environment, 2022, 3, .	6.8	17
7	On carbon burial and net primary production through Earth's history. Numerische Mathematik, 2022, 322, 413-460.	1.4	8
8	Decoupled oxygenation of the Ediacaran ocean and atmosphere during the rise of early animals. Earth and Planetary Science Letters, 2022, 591, 117619.	4.4	17
9	Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology, 2021, 49, 299-303.	4.4	18
10	The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nature Communications, 2021, 12, 503.	12.8	18
11	Spatial continuous integration of Phanerozoic global biogeochemistry and climate. Gondwana Research, 2021, 100, 73-86.	6.0	31
12	Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years. Earth-Science Reviews, 2021, 215, 103503.	9.1	259
13	Pulsed oxygenation events drove progressive oxygenation of the early Mesoproterozoic ocean. Earth and Planetary Science Letters, 2021, 559, 116754.	4.4	28
14	Devonian paleoclimate and its drivers: A reassessment based on a new conodont δ18O record from South China. Earth-Science Reviews, 2021, 222, 103814.	9.1	19
15	Evolution of the structure and impact of Earth's biosphere. Nature Reviews Earth & Environment, 2021, 2, 123-139.	29.7	37
16	Exploring multiple steady states in Earth's long-term carbon cycle. Numerische Mathematik, 2021, 321, 1033-1044.	1.4	5
17	Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nature Geoscience, 2021, 14, 924-929.	12.9	40
18	Middle Permian organic carbon isotope stratigraphy and the origin of the Kamura Event. Gondwana Research, 2020, 79, 217-232.	6.0	20

BENJAMIN J W MILLS

#	Article	IF	CITATIONS
19	An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Science Advances, 2020, 6, .	10.3	50
20	Past climates inform our future. Science, 2020, 370, .	12.6	253
21	Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nature Communications, 2020, 11, 2962.	12.8	47
22	Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 2020, 10, 20190137.	3.0	63
23	Development of Iron Speciation Reference Materials for Palaeoredox Analysis. Geostandards and Geoanalytical Research, 2020, 44, 581-591.	3.1	31
24	Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 2020, 11, 1670.	12.8	49
25	A Capacitorâ€Discharge Mechanism to Explain the Timing of Orogenyâ€Related Global Glaciations. Geophysical Research Letters, 2019, 46, 8347-8354.	4.0	4
26	Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nature Geoscience, 2019, 12, 823-827.	12.9	87
27	A tectonically driven Ediacaran oxygenation event. Nature Communications, 2019, 10, 2690.	12.8	37
28	Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 2019, 12, 468-474.	12.9	96
29	Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science, 2019, 366, 1333-1337.	12.6	85
30	Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Research, 2019, 67, 172-186.	6.0	107
31	COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 2018, 178, 1-28.	9.1	205
32	Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160503.	4.0	22
33	The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica. Geochimica Et Cosmochimica Acta, 2018, 230, 17-45.	3.9	29
34	Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications, 2018, 9, 4081.	12.8	166
35	Long-Term Planetary Habitability and the Carbonate-Silicate Cycle. Astrobiology, 2018, 18, 469-480.	3.0	20
36	Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nature Communications, 2018, 9, 2554.	12.8	56

BENJAMIN J W MILLS

#	Article	IF	CITATIONS
37	Model based Paleozoic atmospheric oxygen estimates: a revisit to GEOCARBSULF. Numerische Mathematik, 2018, 318, 557-589.	1.4	12
38	Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nature Communications, 2017, 8, 14379.	12.8	121
39	Tectonic controls on the long-term carbon isotope mass balance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4318-4323.	7.1	57
40	Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic. Nature Communications, 2017, 8, 1110.	12.8	37
41	Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160318.	3.4	43
42	A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology, 2016, 44, 1023-1026.	4.4	49
43	Earliest land plants created modern levels of atmospheric oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9704-9709.	7.1	236
44	Climate, decay, and the death of the coal forests. Current Biology, 2016, 26, R563-R567.	3.9	25
45	Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9073-9078.	7.1	66
46	Changing tectonic controls on the longâ€ŧerm carbon cycle from <scp>M</scp> esozoic to present. Geochemistry, Geophysics, Geosystems, 2014, 15, 4866-4884.	2.5	54
47	Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature, 2013, 501, 408-411.	27.8	61
48	Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nature Geoscience, 2011, 4, 861-864.	12.9	83