Kwi-Il Park

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6769552/kwi-il-park-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69	5,092	28	71
papers	citations	h-index	g-index
73	5,897	11.2 avg, IF	5.6
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
69	High-temperature workable flexible piezoelectric energy harvester comprising thermally stable (K,Na)NbO3-based ceramic and polyimide composites. <i>Composites Part B: Engineering</i> , 2022 , 234, 10967	71 ¹⁰	O
68	Ferroelectric Polymer Nanofibers Reminiscent of Morphotropic Phase Boundary Behavior for Improved Piezoelectric Energy Harvesting <i>Small</i> , 2022 , e2104472	11	1
67	Enhanced poling efficiency via a maximized organic-inorganic interfacial effect for water droplet-driven energy harvesting. <i>Nano Energy</i> , 2022 , 98, 107238	17.1	O
66	Ferroelectric Polymer Nanofibers Reminiscent of Morphotropic Phase Boundary Behavior for Improved Piezoelectric Energy Harvesting (Small 15/2022). <i>Small</i> , 2022 , 18, 2270072	11	
65	Ultra-magnetic field sensitive magnetoelectric composite with sub-pT detection limit at low frequency enabled by flash photon annealing. <i>Nano Energy</i> , 2021 , 90, 106598	17.1	2
64	Kinetic motion sensors based on flexible and lead-free hybrid piezoelectric composite energy harvesters with nanowires-embedded electrodes for detecting articular movements. <i>Composites Part B: Engineering</i> , 2021 , 212, 108705	10	17
63	Enhanced Energy Conversion Performance of a MagnetoMechanoElectric Generator Using a Laminate Composite Made of Piezoelectric Polymer and Metallic Glass. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000969	6.4	7
62	Synergistically Improved Thermoelectric Energy Harvesting of Edge-Oxidized-Graphene-Bridged N-Type Bismuth Telluride Thick Films. <i>ACS Applied Materials & Description (Control of the Control of the Con</i>	9.5	5
61	Synergetic enhancement of the energy harvesting performance in flexible hybrid generator driven by human body using thermoelectric and piezoelectric combine effects. <i>Applied Surface Science</i> , 2021 , 558, 149784	6.7	5
60	Role of oxygen vacancy defects in piezoelectric thermal stability characteristics of Mn-doped (K,Na,Li)NbO3 piezoceramics. <i>Ceramics International</i> , 2021 , 47, 27803-27815	5.1	5
59	Synthesis and characterization of carbon-coated Cu-Ni alloy nanoparticles and their application in conductive films. <i>Applied Surface Science</i> , 2021 , 566, 150672	6.7	4
58	Flexoelectric-boosted piezoelectricity of BaTiO3@SrTiO3 core-shell nanostructure determined by multiscale simulations for flexible energy harvesters. <i>Nano Energy</i> , 2021 , 89, 106469	17.1	4
57	Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer. <i>Journal of Alloys and Compounds</i> , 2021 , 884, 161119	5.7	1
56	Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix. <i>Journal of Materials Science and Technology</i> , 2021 , 94, 175-182	9.1	7
55	Piezoelectric BaTiO3 microclusters and embossed ZnSnO3 microspheres-based monolayer for highly-efficient and flexible composite generator. <i>Composites Part B: Engineering</i> , 2020 , 203, 108476	10	10
54	(K,Na)NbO3-LiNbO3 nanocube-based flexible and lead-free piezoelectric nanocomposite energy harvesters. <i>Journal of the Korean Ceramic Society</i> , 2020 , 57, 401-408	2.2	12
53	Piezoelectricity of picosecond laser-synthesized perovskite BaTiO3 nanoparticles. <i>Applied Surface Science</i> , 2020 , 511, 145614	6.7	8

(2018-2020)

52	Selective Phase Control of Dopant-Free Potassium Sodium Niobate Perovskites in Solution. <i>Inorganic Chemistry</i> , 2020 , 59, 3042-3052	5.1	16
51	Piezoelectric energy conversion by lead-free perovskite BaTiO3 nanotube arrays fabricated using electrochemical anodization. <i>Applied Surface Science</i> , 2020 , 512, 144784	6.7	14
50	Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. <i>Nano Energy</i> , 2020 , 78, 105266	17.1	40
49	Piezoelectric Flexible Energy Harvester Based on BaTiO3 Thin Film Enabled by Exfoliating the Mica Substrate. <i>Energy Technology</i> , 2019 , 7, 1980353	3.5	3
48	Piezoelectric Energy Harvesting from Two-Dimensional Boron Nitride Nanoflakes. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	58
47	Vertically Aligned Piezoelectric Perovskite Nanowire Array on Flexible Conducting Substrate for Energy Harvesting Applications. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900228	6.8	10
46	A Comparison Study of Fatigue Behavior of Hard and Soft Piezoelectric Single Crystal Macro-Fiber Composites for Vibration Energy Harvesting. <i>Sensors</i> , 2019 , 19,	3.8	25
45	Dual-Structured Flexible Piezoelectric Film Energy Harvesters for Effectively Integrated Performance. <i>Sensors</i> , 2019 , 19,	3.8	17
44	Piezoelectric Flexible Energy Harvester Based on BaTiO3 Thin Film Enabled by Exfoliating the Mica Substrate. <i>Energy Technology</i> , 2019 , 7, 1900638	3.5	18
43	Flexible Electronics: Vertically Aligned Piezoelectric Perovskite Nanowire Array on Flexible Conducting Substrate for Energy Harvesting Applications (Adv. Mater. Technol. 8/2019). <i>Advanced Materials Technologies</i> , 2019 , 4, 1970046	6.8	
42	Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 758-773	7.1	65
41	Flexible Energy Harvester Made of Organic-Inorganic Hybrid Piezoelectric Nanocomposite. <i>Korean Journal of Materials Research</i> , 2019 , 29, 371-377	0.2	3
40	A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles. <i>Journal of Korean Powder Metallurgy Institute</i> , 2019 , 26, 119-125	0.1	1
39	Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25481-25489	13	43
38	Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles. <i>Nano Energy</i> , 2019 , 58, 78-8	417.1	17
37	Self-powered flexible electronics beyond thermal limits. <i>Nano Energy</i> , 2019 , 56, 531-546	17.1	51
36	Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester. <i>Small</i> , 2018 , 14, e1704022	11	102
35	Enhanced output performance of a lead-free nanocomposite generator using BaTiO3 nanoparticles and nanowires filler. <i>Applied Surface Science</i> , 2018 , 429, 164-170	6.7	31

34	Recent Progress in Flexible Energy Harvesting Devices based on Piezoelectric Nanomaterials. Journal of Korean Powder Metallurgy Institute, 2018 , 25, 263-272	0.1	4
33	CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs. <i>Korean Journal of Materials Research</i> , 2018 , 28, 417-422	0.2	
32	Lead-free BaTiO3 Nanowire Arrays-based Piezoelectric Energy Harvester. MRS Advances, 2017, 2, 3415	5-3 <u>4.</u> 70	7
31	Facile hydrothermal synthesis of BaZrxTi1\(\text{NO} 3\) nanoparticles and their application to a lead-free nanocomposite generator. <i>RSC Advances</i> , 2017 , 7, 2851-2856	3.7	23
30	Piezoelectric energy harvesting from a PMNBT single nanowire. RSC Advances, 2017, 7, 260-265	3.7	48
29	All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material. <i>Nano Energy</i> , 2017 , 41, 337-343	17.1	45
28	Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. <i>Nano Research</i> , 2017 , 10, 437-455	10	74
27	Self-Powered Devices: Self-Powered Wireless Sensor Node Enabled by an Aerosol-Deposited PZT Flexible Energy Harvester (Adv. Energy Mater. 13/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	3
26	Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. <i>Extreme Mechanics Letters</i> , 2016 , 9, 269-281	3.9	281
25	Stretchable piezoelectric nanocomposite generator. <i>Nano Convergence</i> , 2016 , 3, 12	9.2	71
24	Self-Powered Wireless Sensor Node Enabled by an Aerosol-Deposited PZT Flexible Energy Harvester. <i>Advanced Energy Materials</i> , 2016 , 6, 1600237	21.8	119
23	A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite. <i>Nanoscale</i> , 2016 , 8, 17632-17638	7.7	78
22	A Reconfigurable Rectified Flexible Energy Harvester via Solid-State Single Crystal Grown PMN B ZT. <i>Advanced Energy Materials</i> , 2015 , 5, 1500051	21.8	95
21	High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test. <i>Journal of the Korean Ceramic Society</i> , 2015 , 52, 441-448	2.2	3
20	Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. <i>Advanced Materials</i> , 2014 , 26, 2514-20	24	538
19	Nanogenerators: Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates (Adv. Mater. 16/2014). <i>Advanced Materials</i> , 2014 , 26, 2450-2450	24	9
	30DSCI aces (Adv. Mater. 10/2014). Advanced Materials, 2014 , 20, 2430-2430	'	
18	Reliable control of filament formation in resistive memories by self-assembled nanoinsulators derived from a block copolymer. <i>ACS Nano</i> , 2014 , 8, 9492-502	16.7	77

LIST OF PUBLICATIONS

16	Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off. <i>Advanced Materials</i> , 2014 , 26, 7480-7	24	102
15	Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. <i>Advanced Materials</i> , 2014 , 26, 4880-7	24	445
14	Lead-free BaTiO3 nanowires-based flexible nanocomposite generator. <i>Nanoscale</i> , 2014 , 6, 8962-8	7.7	88
13	Nanogenerators: Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester (Adv. Mater. 28/2014). <i>Advanced Materials</i> , 2014 , 26, 4754-4754	24	1
12	Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler. <i>Advanced Functional Materials</i> , 2014 , 24, 2620-2629	15.6	176
11	Flexible Electronics: Flexible Crossbar-Structured Resistive Memory Arrays on Plastic Substrates via Inorganic-Based Laser Lift-Off (Adv. Mater. 44/2014). <i>Advanced Materials</i> , 2014 , 26, 7418-7418	24	1
10	Flexible and Large-Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes. <i>Advanced Energy Materials</i> , 2013 , 3, 1539-1544	21.8	184
9	Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano, 2013, 7, 11016-25	16.7	187
8	Nanocomposites: Flexible and Large-Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes (Adv. Energy Mater. 12/2013). <i>Advanced Energy Materials</i> , 2013 , 3, 1530-1530	21.8	5
7	Bendable inorganic thin-film battery for fully flexible electronic systems. <i>Nano Letters</i> , 2012 , 12, 4810-6	11.5	431
6	Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. <i>Nano Energy</i> , 2012 , 1, 145-151	17.1	107
5	Flexible nanocomposite generator made of BaTiO[hanoparticles and graphitic carbons. <i>Advanced Materials</i> , 2012 , 24, 2999-3004, 2937	24	511
4	Bendable and Transparent Barium Titanate Capacitors on Plastic Substrates for High Performance Flexible Ferroelectric Devices. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, G57		18
3	Piezoelectric BaTiOlthin film nanogenerator on plastic substrates. <i>Nano Letters</i> , 2010 , 10, 4939-43	11.5	597
2	HIGH TEMPERATURE MECHANICAL PROPERTIES OF CVD-SiC THIN FILMS. <i>Modern Physics Letters B</i> , 2009 , 23, 3877-3886	1.6	9
1	Exceeding 50ImW RMS-Output Magneto-Mechano-Electric Generator by Hybridizing Piezoelectric and Electromagnetic Induction Effects. <i>Advanced Functional Materials</i> ,2112028	15.6	2