Stephen A Palmisano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6769505/publications.pdf Version: 2024-02-01

STEDHEN A DALMISANO

#	Article	IF	CITATIONS
1	Effects of display lag on vection and presence in the Oculus Rift HMD. Virtual Reality, 2022, 26, 425-436.	6.1	5
2	Reductions in sickness with repeated exposure to HMD-based virtual reality appear to be game-specific. Virtual Reality, 2022, 26, 1373-1389.	6.1	16
3	Unexpected Vection Exacerbates Cybersickness During HMD-Based Virtual Reality. Frontiers in Virtual Reality, 2022, 3, .	3.7	2
4	Effect of ambient lighting on frequency dependence in transcranial electrical stimulation-induced phosphenes. Scientific Reports, 2022, 12, 7775.	3.3	2
5	Effects of dynamic field-of-view restriction on cybersickness and presence in HMD-based virtual reality. Virtual Reality, 2021, 25, 433-445.	6.1	51
6	Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation. Bioelectromagnetics, 2021, 42, 146-158.	1.6	10
7	Vision Impairment Provides New Insight Into Self-Motion Perception. , 2021, 62, 4.		6
8	Lessons Learned From Immersive and Desktop VR Training of Mines Rescuers. Frontiers in Virtual Reality, 2021, 2, .	3.7	6
9	Cost–benefit analysis of virtual reality-based training for emergency rescue workers: a socio-technical systems approach. Virtual Reality, 2021, 25, 1071-1086.	6.1	12
10	Divergent Thinking Influences the Perception of Ambiguous Visual Illusions. Perception, 2021, 50, 418-437.	1.2	7
11	Spatial presence depends on â€ [~] coupling' between body sway and visual motion presented on head-mounted displays (HMDs). Applied Ergonomics, 2021, 92, 103355.	3.1	8
12	Effects of Linear Visual-Vestibular Conflict on Presence, Perceived Scene Stability and Cybersickness in the Oculus Go and Oculus Quest. Frontiers in Virtual Reality, 2021, 2, .	3.7	16
13	Differences in virtual and physical head orientation predict sickness during head-mounted display based virtual reality. Journal of Vision, 2021, 21, 1966.	0.3	0
14	Effects of luminance contrast, averaged luminance and spatial frequency on vection. Experimental Brain Research, 2021, 239, 3507-3525.	1.5	4
15	A Pilot Study Examining the Unexpected Vection Hypothesis of Cybersickness , 2021, , .		0
16	Effects of steering locomotion and teleporting on cybersickness and presence in HMD-based virtual reality. Virtual Reality, 2020, 24, 453-468.	6.1	83
17	The stereoscopic advantage for vection persists despite reversed disparity. Attention, Perception, and Psychophysics, 2020, 82, 2098-2118.	1.3	3
18	Examining the potential of virtual reality to deliver remote rehabilitation. Computers in Human Behavior, 2020, 105, 106223.	8.5	25

#	Article	IF	CITATIONS
19	Multisensory integration and the experience of scene instability, presence and cybersickness in virtual environments. Computers in Human Behavior, 2020, 113, 106484.	8.5	50
20	The Shepard–Risset Glissando: Identifying the Origins of Metaphorical Auditory Vection and Motion Sickness. Multisensory Research, 2020, 33, 61-86.	1.1	8
21	Investigating the process of mine rescuers' safety training with immersive virtual reality: A structural equation modelling approach. Computers and Education, 2020, 153, 103891.	8.3	51
22	Cybersickness in Head-Mounted Displays Is Caused by Differences in the User's Virtual and Physical Head Pose. Frontiers in Virtual Reality, 2020, 1, .	3.7	47
23	Pseudoscopic vection: Reversing stereo continues to improve self-motion perception despite increased conflict Journal of Vision, 2020, 20, 339.	0.3	0
24	Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays, 2019, 58, 3-11.	3.7	90
25	Frequencyâ€dependent and montageâ€based differences in phosphene perception thresholds via transcranial alternating current stimulation. Bioelectromagnetics, 2019, 40, 365-374.	1.6	17
26	Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness. Displays, 2019, 60, 9-17.	3.7	55
27	Vection induced by low-level motion extracted from complex animation films. Experimental Brain Research, 2019, 237, 3321-3332.	1.5	2
28	Comfortable Locomotion in VR: Teleportation is Not a Complete Solution. , 2019, , .		12
29	Can We Predict Susceptibility to Cybersickness?. , 2019, , .		3
30	Vection strength increases with simulated eye-separation. Attention, Perception, and Psychophysics, 2019, 81, 281-295.	1.3	7
31	The Factors Affecting the Quality of Learning Process and Outcome in Virtual Reality Environment for Safety Training in the Context of Mining Industry. Advances in Intelligent Systems and Computing, 2019, , 404-411.	0.6	8
32	Method for estimating display lag in the Oculus Rift S and CV1. , 2019, , .		15
33	Monocular Viewing Protects Against Cybersickness Produced by Head Movements in the Oculus Rift. , 2019, , .		17
34	Predicting vection and visually induced motion sickness based on spontaneous postural activity. Experimental Brain Research, 2018, 236, 315-329.	1.5	50
35	View specific generalisation effects in face recognition: Front and yaw comparison views are better than pitch. PLoS ONE, 2018, 13, e0209927.	2.5	9

36 Effects of head-display lag on presence in the oculus rift. , 2018, , .

7

#	Article	IF	CITATIONS
37	The search for instantaneous vection: An oscillating visual prime reduces vection onset latency. PLoS ONE, 2018, 13, e0195886.	2.5	25
38	Vection Is Enhanced by Increased Exposure to Optic Flow. I-Perception, 2018, 9, 204166951877406.	1.4	17
39	A Qualitative Evaluation of the Role of Virtual Reality as a Safety Training Tool for the Mining Industry. Lecture Notes in Computer Science, 2018, , 188-200.	1.3	1
40	Cortical Correlates of the Simulated Viewpoint Oscillation Advantage for Vection. Multisensory Research, 2017, 30, 739-761.	1.1	13
41	Evaluating 360-Virtual Reality for Mining Industry's Safety Training. Communications in Computer and Information Science, 2017, , 555-561.	0.5	6
42	The Shepard–Risset glissando: music that moves you. Experimental Brain Research, 2017, 235, 3111-3127.	1.5	14
43	The Oscillating Potential Model of Visually Induced Vection. I-Perception, 2017, 8, 204166951774217.	1.4	27
44	Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 2017, 46, 1-8.	3.7	137
45	Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows. Journal of Vision, 2016, 16, 7.	0.3	22
46	Identifying Objective EEG Based Markers of Linear Vection in Depth. Frontiers in Psychology, 2016, 7, 1205.	2.1	24
47	Relative Visual Oscillation Can Facilitate Visually Induced Self-Motion Perception. I-Perception, 2016, 7, 204166951666190.	1.4	9
48	Vection depends on perceived surface properties. Attention, Perception, and Psychophysics, 2016, 78, 1163-1173.	1.3	9
49	The Nature and Timing of Tele-Pseudoscopic Experiences. I-Perception, 2016, 7, 204166951562579.	1.4	3
50	Age-related effects of increasing postural challenge on eye movement onset latencies to visual targets. Experimental Brain Research, 2016, 234, 1599-1609.	1.5	3
51	Change Magnitude Does Not Guide Attention in an Object Change Detection Task. Perception, 2015, 44, 93-99.	1.2	2
52	Future challenges for vection research: definitions, functional significance, measures, and neural bases. Frontiers in Psychology, 2015, 6, 193.	2.1	161
53	The Oculus Rift: a cost-effective tool for studying visual-vestibular interactions in self-motion perception. Frontiers in Psychology, 2015, 6, 248.	2.1	59
54	Walking without optic flow reduces subsequent vection. Experimental Brain Research, 2015, 233, 275-281.	1.5	14

#	Article	IF	CITATIONS
55	The Neural Correlates of Vection - an fMRI study. Journal of Vision, 2015, 15, 1007.	0.3	1
56	Heading Perception with Simulated Visual Defects. Journal of Vision, 2015, 15, 1015.	0.3	0
57	The Role of Perceived Speed in Vection: Does Perceived Speed Modulate the Jitter and Oscillation Advantages?. PLoS ONE, 2014, 9, e92260.	2.5	21
58	Chaos in Balance: Non-Linear Measures of Postural Control Predict Individual Variations in Visual Illusions of Motion. PLoS ONE, 2014, 9, e113897.	2.5	41
59	Evidence against an ecological explanation of the jitter advantage for vection. Frontiers in Psychology, 2014, 5, 1297.	2.1	10
60	Binocular contributions to linear vertical vection. Journal of Vision, 2014, 14, 5-5.	0.3	14
61	Monocular and binocular edges enhance the perception of stereoscopic slant. Vision Research, 2014, 100, 113-123.	1.4	3
62	Spontaneous postural sway predicts the strength of smooth vection. Experimental Brain Research, 2014, 232, 1185-1191.	1.5	34
63	Vision and Virtual Environments. Human Factors and Ergonomics, 2014, , 39-85.	0.0	8
64	Virtual Swimming— Breaststroke Body Movements Facilitate Vection. Multisensory Research, 2013, 26, 267-275.	1,1	10
65	Vection in Depth during Treadmill Walking. Perception, 2013, 42, 562-576.	1.2	27
66	Vection Induced by Illusory Motion in a Stationary Image. Perception, 2013, 42, 1001-1005.	1.2	10
67	Perceived Gravitoinertial Force During Vection. Aviation, Space, and Environmental Medicine, 2013, 84, 971-974.	0.5	3
68	Spontaneous postural instability predicts susceptibility to smooth vection. Journal of Vision, 2013, 13, 703-703.	0.3	0
69	Perception of smooth and perturbed vection in short-duration microgravity. Journal of Vision, 2013, 13, 702-702.	0.3	Ο
70	Second-Order Motion is Less Efficient at Modulating Vection Strength. Seeing and Perceiving, 2012, 25, 213-221.	0.3	7
71	Horizontal fixation point oscillation and simulated viewpoint oscillation both increase vection in depth. Journal of Vision, 2012, 12, 15-15.	0.3	26
72	Directionless Vection: A New Illusory Self-Motion Perception. I-Perception, 2012, 3, 775-777.	1.4	7

#	Article	IF	CITATIONS
73	Simulated Angular Head Oscillation Enhances Vection in Depth. Perception, 2012, 41, 402-414.	1.2	19
74	Vection during Conflicting Multisensory Information about the Axis, Magnitude, and Direction of Self-Motion. Perception, 2012, 41, 253-267.	1.2	18
75	Independent Effects of Local and Global Binocular Disparity on the Perceived Convexity of Stereoscopically Presented Faces in Scenes. Perception, 2012, 41, 168-174.	1.2	3
76	Vection Can Be Induced without Global-Motion Awareness. Perception, 2012, 41, 493-497.	1.2	9
77	Hunger Enhances Vertical Vection. Perception, 2012, 41, 1003-1006.	1.2	7
78	Refractive Error and Monocular Viewing Strengthen the Hollow-Face Illusion. Perception, 2012, 41, 1281-1285.	1.2	2
79	Perception of smooth and perturbed vection in short-duration microgravity. Experimental Brain Research, 2012, 223, 479-487.	1.5	17
80	The Face Inversion Effect Following Pitch and Yaw Rotations: Investigating the Boundaries of Holistic Processing. Frontiers in Psychology, 2012, 3, 563.	2.1	10
81	Influence of head orientation and viewpoint oscillation on linear vection1. Journal of Vestibular Research: Equilibrium and Orientation, 2012, 22, 105-116.	2.0	17
82	Vection in depth during treadmill locomotion. Journal of Vision, 2012, 12, 181-181.	0.3	4
83	Postural and viewpoint oscillation effects on the perception of self-motion Journal of Vision, 2012, 12, 576-576.	0.3	1
84	Display Lag and Gain Effects on Vection Experienced by Active Observers. Aviation, Space, and Environmental Medicine, 2011, 82, 763-769.	0.5	21
85	Face Viewpoint Effects about Three Axes: The Role of Configural and Featural Processing. Perception, 2011, 40, 761-784.	1.2	22
86	Binocular Disparity Magnitude Affects Perceived Depth Magnitude despite Inversion of Depth Order. Perception, 2011, 40, 975-988.	1.2	11
87	Vection in Depth during Consistent and Inconsistent Multisensory Stimulation. Perception, 2011, 40, 155-174.	1.2	44
88	Depth Interval Estimates from Motion Parallax and Binocular Disparity beyond Interaction Space. Perception, 2011, 40, 39-49.	1.2	13
89	Independent modulation of motion and vection aftereffects revealed by using coherent oscillation and random jitter in optic flow. Vision Research, 2011, 51, 2499-2508.	1.4	29
90	Simulated Viewpoint Jitter Shakes Sensory Conflict Accounts of Vection. Seeing and Perceiving, 2011, 24, 173-200.	0.3	76

#	Article	IF	CITATIONS
91	The time course of configural change detection for novel 3-D objects. Attention, Perception, and Psychophysics, 2010, 72, 999-1012.	1.3	2
92	Visually mediated eye movements regulate the capture of optic flow in self-motion perception. Experimental Brain Research, 2010, 202, 355-361.	1.5	25
93	Eccentric gaze dynamics enhance vection in depth. Journal of Vision, 2010, 10, 7-7.	0.3	28
94	Stereoscopic perception of real depths at large distances. Journal of Vision, 2010, 10, 19-19.	0.3	66
95	Pilot gaze and glideslope control. ACM Transactions on Applied Perception, 2010, 7, 1-18.	1.9	13
96	Stereoscopic discrimination of the layout of ground surfaces. Journal of Vision, 2009, 9, 8-8.	0.3	10
97	Nonlinear characterization of a simple process in human vision. Journal of Vision, 2009, 9, 1-1.	0.3	55
98	Effects of gaze on vection from jittering, oscillating, and purely radial optic flow. Attention, Perception, and Psychophysics, 2009, 71, 1842-1853.	1.3	43
99	Combined Pitch and Roll and Cybersickness in a Virtual Environment. Aviation, Space, and Environmental Medicine, 2009, 80, 941-945.	0.5	76
100	Effects of Simulated Viewpoint Jitter on Visually Induced Postural Sway. Perception, 2009, 38, 442-453.	1.2	31
101	Effects of active and passive viewpoint jitter on vection in depth. Brain Research Bulletin, 2008, 77, 335-342.	3.0	46
102	Time-to-Contact Perception During Simulated Night Landing. The International Journal of Aviation Psychology, 2008, 18, 207-223.	0.7	1
103	Vection Change Exacerbates Simulator Sickness in Virtual Environments. Presence: Teleoperators and Virtual Environments, 2008, 17, 283-292.	0.6	78
104	Effects of scenery, lighting, glideslope, and experience on timing the landing flare Journal of Experimental Psychology: Applied, 2008, 14, 236-246.	1.2	7
105	Accelerating Self-Motion Displays Produce More Compelling Vection in Depth. Perception, 2008, 37, 22-33.	1.2	55
106	Expanding and Contracting Optic-Flow Patterns and Vection. Perception, 2008, 37, 704-711.	1.2	46
107	Effects of image intensifier halo on perceived layout. , 2007, , .		1
108	Things are Looking up: Differential Decline in Face Recognition following Pitch and Yaw Rotation. Perception, 2007, 36, 1334-1352.	1.2	16

#	Article	IF	CITATIONS
109	Vertical Display Oscillation Effects on Forward Vection and Simulator Sickness. Aviation, Space, and Environmental Medicine, 2007, 78, 951-956.	0.5	53
110	Expanding and contracting optical flow patterns and simulator sickness. Aviation, Space, and Environmental Medicine, 2007, 78, 383-6.	0.5	7
111	The role of attention in processing configural and shape information in 3-D novel objects. Visual Cognition, 2006, 13, 623-642.	1.6	6
112	The configural advantage in object change detection persists across depth rotation. Perception & Psychophysics, 2006, 68, 1254-1263.	2.3	4
113	Effect of decorrelation on 3-D grating detection with static and dynamic random-dot stereograms. Vision Research, 2006, 46, 57-71.	1.4	5
114	Illusory scene distortion occurs during perceived self-rotation in roll. Vision Research, 2006, 46, 4048-4058.	1.4	14
115	Visual Perception of Touchdown Point During Simulated Landing Journal of Experimental Psychology: Applied, 2005, 11, 19-32.	1.2	22
116	Jitter and Size Effects on Vection are Immune to Experimental Instructions and Demands. Perception, 2004, 33, 987-1000.	1.2	85
117	Coherent Perspective Jitter Induces Visual Illusions of Self-Motion. Perception, 2003, 32, 97-110.	1.2	53
118	Consistent Stereoscopic Information Increases the Perceived Speed of Vection in Depth. Perception, 2002, 31, 463-480.	1.2	61
119	Effects of horizontal and vertical additive disparity noise on stereoscopic corrugation detection. Vision Research, 2001, 41, 3133-3143.	1.4	5
120	Global-Perspective Jitter Improves Vection in Central Vision. Perception, 2000, 29, 57-67.	1.2	91
121	Stimulus Eccentricity and Spatial Frequency Interact to Determine Circular Vection. Perception, 1998, 27, 1067-1077.	1.2	57
122	Perceiving self-motion in depth: The role of stereoscopic motion and changing-size cues. Perception & Psychophysics, 1996, 58, 1168-1176.	2.3	76