
Kunhua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6768970/publications.pdf Version: 2024-02-01

Кимнил Ц

1 Architecture of autoinhibited and active BRAFAC*MEK13C*14:3:3 complexes. Nature, 2019, 575, 545:550. 27.8 197 2 Interdomain and intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide 3.4 67 3 Structural basis for presumos protected C-thread abosemal peptide macrocyclization. Nature 8.0 53 4 Structural characterization of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioween phoromore bioxaction of asyl C-OA addages reveals a direct Ink bioxaction bioxaction of asyl C-OA addages reveals a direct Ink bioxaction bioxaction bioxaction addition and therapeutic applications. BioMetals, 2016, 29. 4.1 30 5 Microbial additorphore-based iron assimilation and therapeutic applications. BioMetals, 2016, 12, 273-278. 4.1 31 6 Additributive paptide cyclase processes multiple microwindin core peptides within a single polypeptide addition of the Siderophore-interacting Protein from the Fuscadedin Gene Cluster 7.1 23 7 Structure ad Mechanism	#	Article	IF	CITATIONS
2 Synthetases. ACS Chemical Biology, 2016, 11, 2293-2303. 5.4.4 B7 3 Structural basis for precursor proteinisC directed ribosomal peptide macrocyclization. Nature Chemical Biology, 2010, 12, 973-979. 8.0 83 4 Display 2010, 12, 973-979. 8.0 83 5 Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metalolic state in (c) Caenonhabdits elegans (h). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10035-10060. 7.1 33 6 Microbial siderophore-based iron assimilation and therapeutic applications. BioMetals, 2016, 29, 41 83 7 Structure and Mechanism of the Siderophore-interacting Protein from the Fuscachelin Cene Cluster cit of Thermobilitia fuscac(l). Biochemistry, 2015, 54, 9989-4000. 2.8 23 8 Allosteric MEK inhibitors act on B0AF/MEK complexes to block MEK activation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 13, . 7.1 23 9 Cytetosic protein from the mushroom cits Coprinus constus (l) possesses a unique mode for glycan function, Natural Polymorphisms on Human Immunodeficiency Virus-Type 1 Protease Structure, Dynamics, and Drug Pressure Evolution. Journal of Biological Chemistry, 2015, 291, 22741-22756. 3.4 19 11 Discovery and Structural Characterization of variants of fibroblast growth factor receptor genes in career. Ngl Preci	1	Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature, 2019, 575, 545-550.	27.8	197
3 Chemical Biology, 2016, 12, 973-979. \$10 \$33 4 Biogramma Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone the National Academy of Sciences of the United States of America, 2016, 113, 10055-10060. 7.1 35 5 Microbial siderophore-based iron assimilation and therapeutic applications. BioMetals, 2016, 29, 4.1 33 6 A distributive peptide cyclase processes multiple microwitidin core peptides within a single polypeptide substrate. Nature Communications, 2018, 9, 1780. 2.8 31 7 Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Cene Cluster of distributive calls. Biochemistry, 2015, 54, 1989-4000. 2.8 23 8 Allosteric MEK inhibitors act on BRAFIMEK complexes to block MEK activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, 7.1 23 9 Evictoxic protein from the mushroom G-Coprinus constuse (b) possesses a unique mode for glycan binding and specificity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, \$980-5935. 21 21 10 Evictoxic protein from the mushroom G-Coprinus constuse (b) possesses a unique mode for glycan binding and specificity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, \$980-5935. 21 21 11 Discovery and Structure. Dynamics, and Drug Pressure Evolutio	2	Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases. ACS Chemical Biology, 2016, 11, 2293-2303.	3.4	67
4 biosynthesis and metabolic state in <0: Caenorhabditis elegans (J). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10055-10060.				