Charalambos Themistocleous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6768338/publications.pdf

Version: 2024-02-01

CHARALAMBOS

#	Article	IF	CITATIONS
1	Best practice guidelines for reporting spoken discourse in aphasia and neurogenic communication disorders. Aphasiology, 2023, 37, 761-784.	2.2	11
2	The Contribution of Working Memory Areas to Verbal Learning and Recall in Primary Progressive Aphasia. Frontiers in Neurology, 2022, 13, 698200.	2.4	2
3	Sonorant spectra and coarticulation distinguish speakers with different dialects. Speech Communication, 2022, 142, 1-14.	2.8	1
4	Vowel learning in diglossic settings: Evidence from Arabic-Greek learners. International Journal of Bilingualism, 2021, 25, 135-150.	1.2	12
5	Part of Speech Production in Patients With Primary Progressive Aphasia: An Analysis Based on Natural Language Processing. American Journal of Speech-Language Pathology, 2021, 30, 466-480.	1.8	19
6	Automatic Subtyping of Individuals with Primary Progressive Aphasia. Journal of Alzheimer's Disease, 2021, 79, 1185-1194.	2.6	13
7	Standardizing Assessment of Spoken Discourse in Aphasia: A Working Group With Deliverables. American Journal of Speech-Language Pathology, 2021, 30, 491-502.	1.8	31
8	Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sciences, 2021, 11, 335.	2.3	11
9	Voice quality and speech fluency distinguish individuals with Mild Cognitive Impairment from Healthy Controls. PLoS ONE, 2020, 15, e0236009.	2.5	54
10	A Tool for Automatic Scoring of Spelling Performance. Journal of Speech, Language, and Hearing Research, 2020, 63, 4179-4192.	1.6	9
11	Are there prototypical associations between time frames and aspectual values? Evidence from Greek aphasia and healthy ageing. Clinical Linguistics and Phonetics, 2019, 33, 191-217.	0.9	10
12	Dialect Classification From a Single Sonorant Sound Using Deep Neural Networks. Frontiers in Communication, 2019, 4, .	1.2	9
13	P3â€⊋98: PROSODIC FEATURES AS POTENTIAL MARKERS OF LINGUISTIC AND COGNITIVE DETERIORATION IN MILD COGNITIVE IMPAIRMENT. Alzheimer's and Dementia, 2018, 14, P1195.	0.8	1
14	Identification of Mild Cognitive Impairment From Speech in Swedish Using Deep Sequential Neural Networks. Frontiers in Neurology, 2018, 9, 975.	2.4	40
15	Dialect classification using vowel acoustic parameters. Speech Communication, 2017, 92, 13-22.	2.8	21
16	The Nature of Phonetic Gradience across a Dialect Continuum: Evidence from Modern Greek Vowels. Phonetica, 2017, 74, 157-172.	0.6	12
17	Effects of Two Linguistically Proximal Varieties on the Spectral and Coarticulatory Properties of Fricatives: Evidence from Athenian Greek and Cypriot Greek. Frontiers in Psychology, 2017, 8, 1945.	2.1	4
18	Acquiring Clitic Placement in Bilectal Settings: Interactions between Social Factors. Frontiers in Communication, 2017, 2, .	1.2	16

CHARALAMBOS

#	Article	IF	CITATIONS
19	Seeking an Anchorage. Stability and Variability in Tonal Alignment of Rising Prenuclear Pitch Accents in Cypriot Greek. Language and Speech, 2016, 59, 433-461.	1.1	13
20	The bursts of stops can convey dialectal information. Journal of the Acoustical Society of America, 2016, 140, EL334-EL339.	1.1	8
21	Edge-tone effects and prosodic domain effects on final lengthening. Linguistic Variation, 2014, 14, 129-160.	0.4	8
22	The Present Perfect in Cypriot Greek revisited. Studies in Language Variation, 2013, , 159-172.	0.2	5
23	Textual Structure and Modality in Thucydides' Military Exhortations. , 2013, , 391-408.		0
24	Effects of Stress on Fricatives: Evidence from Standard Modern Greek. , 0, , .		4
25	Understanding and classifying the different variants of Primary Progressive Aphasia based on spelling performance. Frontiers in Human Neuroscience, 0, 12, .	2.0	2
26	Acoustic markers of PPA variants using machine learning. Frontiers in Human Neuroscience, 0, 12, .	2.0	1
27	Time reference and aspect in agrammatic aphasia: Evidence from Greek. Frontiers in Human Neuroscience, 0, 11, .	2.0	0
28	Morphosyntactic production in agrammatic aphasia: A cross-linguistic machine learning approach Frontiers in Human Neuroscience, 0, 12, .	2.0	0
29	Determining the speech profile of speakers with Primary Progressive Aphasia. Frontiers in Human Neuroscience, 0, 13, .	2.0	0
30	Focus prominence and tonal alignment in Athenian and Cypriot Greek. , 0, , .		0
31	The acoustics of Cypriot Greek fricatives. , 0, , .		0
32	Speech and Mild Cognitive Impairment detection. , 0, , .		1
33	The intonation of Albanian polar questions and statements. , 0, , .		0
34	Effects of Cognitive Impairment on vowel duration effects of Cognitive Impairment on vowel duration. , 0, , .		0
35	Modelling prosodic structure using Artificial Neural Networks. , 0, , .		0
36	Automated speech analysis enables MCI diagnosis. , 0, , .		0