
Carmine Giorgio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/676830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids. Pharmaceuticals, 2022, 15, 137.	3.8	5
2	Metabolic Soft Spot and Pharmacokinetics: Functionalization of C-3 Position of an Eph–Ephrin Antagonist Featuring a Bile Acid Core as an Effective Strategy to Obtain Oral Bioavailability in Mice. Pharmaceuticals, 2022, 15, 41.	3.8	2
3	UniPR1331: Small Eph/Ephrin Antagonist Beneficial in Intestinal Inflammation by Interfering with Type-B Signaling. Pharmaceuticals, 2021, 14, 502.	3.8	2
4	Drug-gut microbiota metabolic interactions: the case of UniPR1331, selective antagonist of the Eph-ephrin system, in mice. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180, 113067.	2.8	5
5	Ephrin or not? Six tough questions on Eph targeting. Expert Opinion on Therapeutic Targets, 2020, 24, 403-415.	3.4	10
6	Optimization of EphA2 antagonists based on a lithocholic acid core led to the identification of UniPR505, a new 31±-carbamoyloxy derivative with antiangiogenetic properties. European Journal of Medicinal Chemistry, 2020, 189, 112083.	5.5	5
7	Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice. Pharmaceuticals, 2020, 13, 69.	3.8	0
8	Targeting the Eph/Ephrin System as Anti-Inflammatory Strategy in IBD. Frontiers in Pharmacology, 2019, 10, 691.	3.5	22
9	Pharmacological evaluation of new bioavailable small molecules targeting Eph/ephrin interaction. Biochemical Pharmacology, 2018, 147, 21-29.	4.4	20
10	UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget, 2018, 9, 24347-24363.	1.8	28
11	Metadynamics for Perspective Drug Design: Computationally Driven Synthesis of New Protein–Protein Interaction Inhibitors Targeting the EphA2 Receptor. Journal of Medicinal Chemistry, 2017, 60, 787-796.	6.4	32
12	Targeting Eph/ephrin system in cancer therapy. European Journal of Medicinal Chemistry, 2017, 142, 152-162.	5.5	80
13	Exploiting Freeâ€Energy Minima to Design Novel EphA2 Protein–Protein Antagonists: From Simulation to Experiment and Return. Chemistry - A European Journal, 2016, 22, 8048-8052.	3.3	15
14	Biochemical characterization of EphA2 antagonists with improved physico-chemical properties by cell-based assays and surface plasmon resonance analysis. Biochemical Pharmacology, 2016, 99, 18-30.	4.4	6
15	The ellagitannin colonic metabolite urolithin D selectively inhibits EphA2 phosphorylation in prostate cancer cells. Molecular Nutrition and Food Research, 2015, 59, 2155-2167.	3.3	31
16	Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 925-933.	5.2	33
17	Δ5-Cholenoyl-amino acids as selective and orally available antagonists of the Eph–ephrin system. European Journal of Medicinal Chemistry, 2015, 103, 312-324.	5.5	38
18	Target Hopping as a Useful Tool for the Identification of Novel EphA2 Protein–Protein Antagonists. ChemMedChem, 2014, 9, 67-72.	3.2	27

CARMINE GIORGIO

#	Article	IF	CITATIONS
19	Therapeutic perspectives of Eph–ephrin system modulation. Drug Discovery Today, 2014, 19, 661-669.	6.4	38
20	Combining Ligand- and Structure-Based Approaches for the Discovery of New Inhibitors of the EPHA2–ephrin-A1 Interaction. Journal of Chemical Information and Modeling, 2014, 54, 2621-2626.	5.4	13
21	1,8-Naphthyridines IX. Potent anti-inflammatory and/or analgesic activity of a new group of substituted 5-amino[1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, of some their Mannich base derivatives and of one novel substituted 5-amino-10-oxo-10H-pyrimido[1,2-a][1,8]naphthyridine-6-carboxamide derivative. European Journal of	5.5	24
22	Amino Acid Conjugates of Lithocholic Acid As Antagonists of the EphA2 Receptor. Journal of Medicinal Chemistry, 2013, 56, 2936-2947.	6.4	50
23	Synthesis and Structure-Activity Relationships of Amino Acid Conjugates of Cholanic Acid as Antagonists of the EphA2 Receptor. Molecules, 2013, 18, 13043-13060.	3.8	13
24	Perturbation of the EphA2–EphrinA1 System in Human Prostate Cancer Cells by Colonic (Poly)phenol Catabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 8877-8884.	5.2	25
25	Structure–Activity Relationships and Mechanism of Action of Eph–ephrin Antagonists: Interaction of Cholanic Acid with the EphA2 Receptor. ChemMedChem, 2012, 7, 1071-1083.	3.2	31
26	Synthesis of new 5,6-dihydrobenzo[h]quinazoline 2,4-diamino substituted and antiplatelet/antiphlogistic activities evaluation. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1125-1129.	2.2	17
27	Polyphenol rich botanicals used as food supplements interfere with EphA2–ephrinA1 system. Pharmacological Research, 2011, 64, 464-470.	7.1	19
28	Lithocholic Acid Is an Eph-ephrin Ligand Interfering with Eph-kinase Activation. PLoS ONE, 2011, 6, e18128.	2.5	66
29	Ocotea quixos Lam. essential oil: In vitro and in vivo investigation on its anti-inflammatory properties. Fìtoterapìâ, 2010, 81, 289-295.	2.2	41
30	1-Methyl and 1-(2-hydroxyalkyl)-5-(3-alkyl/cycloalkyl/phenyl/naphthylureido)-1H-pyrazole-4-carboxylic acid ethyl esters as potent human neutrophil chemotaxis inhibitors. Bioorganic and Medicinal	3.0	21

Chemistry, 2009, 17, 3379-3387.