Fraser R Torpy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6768152/publications.pdf Version: 2024-02-01

FDASED P TODDY

#	Article	lF	CITATIONS
1	Removal of Benzene by the Indoor Plant/Substrate Microcosm and Implications for Air Quality. Water, Air, and Soil Pollution, 2004, 157, 193-207.	2.4	156
2	Does urban forestry have a quantitative effect on ambient air quality in an urban environment?. Atmospheric Environment, 2015, 120, 173-181.	4.1	142
3	The Potted-Plant Microcosm Substantially Reduces Indoor Air VOC Pollution: I. Office Field-Study. Water, Air, and Soil Pollution, 2006, 175, 163-180.	2.4	124
4	Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. Journal of Horticultural Science and Biotechnology, 2002, 77, 120-129.	1.9	112
5	The Potted-Plant Microcosm Substantially Reduces Indoor Air VOC Pollution: II. Laboratory Study. Water, Air, and Soil Pollution, 2006, 177, 59-80.	2.4	105
6	Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants?. Atmospheric Environment, 2013, 77, 267-271.	4.1	95
7	An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Building and Environment, 2017, 115, 281-290.	6.9	92
8	Do the plants in functional green walls contribute to their ability to filter particulate matter?. Building and Environment, 2017, 125, 299-307.	6.9	89
9	The phytoremediation of indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters. Reviews in Environmental Science and Biotechnology, 2018, 17, 395-415.	8.1	77
10	Profiling indoor plants for the amelioration of high CO2 concentrations. Urban Forestry and Urban Greening, 2014, 13, 227-233.	5.3	75
11	Testing the single-pass VOC removal efficiency of an active green wall using methyl ethyl ketone (MEK). Air Quality, Atmosphere and Health, 2018, 11, 163-170.	3.3	75
12	Towards practical indoor air phytoremediation: A review. Chemosphere, 2018, 208, 960-974.	8.2	74
13	Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO2 concentrations. Air Quality, Atmosphere and Health, 2017, 10, 575-585.	3.3	73
14	The distribution of green walls and green roofs throughout Australia: Do policy instruments influence the frequency of projects?. Urban Forestry and Urban Greening, 2017, 24, 164-174.	5.3	66
15	Control of saprolegniosis in the eel Anguilla australis Richardson, by Aeromonas media strain A199. Aquaculture, 2004, 240, 19-27.	3.5	60
16	The in situ pilot-scale phytoremediation of airborne VOCs and particulate matter with an active green wall. Air Quality, Atmosphere and Health, 2019, 12, 33-44.	3.3	57
17	Supplementation with carnosine decreases plasma triglycerides andÂmodulates atherosclerotic plaque composition in diabetic apoÂEâ^'/â^' mice. Atherosclerosis, 2014, 232, 403-409.	0.8	54
18	Functional green wall development for increasing air pollutant phytoremediation: Substrate development with coconut coir and activated carbon. Journal of Hazardous Materials, 2018, 360, 594-603.	12.4	48

FRASER R TORPY

#	Article	IF	CITATIONS
19	Does plant species selection in functional active green walls influence VOC phytoremediation efficiency?. Environmental Science and Pollution Research, 2019, 26, 12851-12858.	5.3	44
20	Active green wall plant health tolerance to diesel smoke exposure. Environmental Pollution, 2018, 240, 448-456.	7.5	40
21	Indoor air pollutants in occupational buildings in a sub-tropical climate: Comparison among ventilation types. Building and Environment, 2016, 98, 190-199.	6.9	38
22	Biocontrol of saprolegniosis in silver perch Bidyanus bidyanus (Mitchell) by Aeromonas media strain A199. Aquaculture, 2004, 235, 77-88.	3.5	37
23	Airborne particulate matter accumulation on common green wall plants. International Journal of Phytoremediation, 2020, 22, 594-606.	3.1	37
24	Evaluation of air flow through an active green wall biofilter. Urban Forestry and Urban Greening, 2019, 41, 75-84.	5.3	36
25	An assessment of the potential fungal bioaerosol production from an active living wall. Building and Environment, 2017, 111, 140-146.	6.9	32
26	Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature?. International Journal of Environmental Research and Public Health, 2020, 17, 5084.	2.6	32
27	Determining broad scale associations between air pollutants and urban forestry: A novel multifaceted methodological approach. Environmental Pollution, 2019, 247, 474-481.	7.5	30
28	The mayfly nymph <i>Austrophlebioides pusillus</i> Harker defies common osmoregulatory assumptions. Royal Society Open Science, 2017, 4, 160520.	2.4	29
29	The botanical biofiltration of VOCs with active airflow: is removal efficiency related to chemical properties?. Atmospheric Environment, 2019, 214, 116839.	4.1	26
30	Fungal Diversity of Shallow Aquifers in Southeastern Australia. Geomicrobiology Journal, 2012, 29, 352-361.	2.0	25
31	In vitro propagation and cryostorage of Syzygium francissi (Myrtaceae) by the encapsulation-dehydration method. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 403-407.	2.1	24
32	Characterisation of fungal and bacterial dynamics in an active green wall used for indoor air pollutant removal. Building and Environment, 2020, 179, 106987.	6.9	24
33	An Assessment of the Suitability of Active Green Walls for NO2 Reduction in Green Buildings Using a Closed-Loop Flow Reactor. Atmosphere, 2019, 10, 801.	2.3	20
34	Bench-Study of Green-Wall Plants for Indoor Air Pollution Reduction. , 2018, 5, 1-15.		20
35	Active botanical biofiltration of air pollutants using Australian native plants. Air Quality, Atmosphere and Health, 2019, 12, 1427-1439.	3.3	19
36	Liquid culture for efficient micropropagation of Wasabia Japonica (MIQ.) matsumura. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 548-552.	2.1	18

FRASER R TORPY

#	Article	IF	CITATIONS
37	Conservation mycology in Australia and the potential role of citizen science. Conservation Biology, 2018, 32, 1031-1037.	4.7	18
38	The botanical biofiltration of volatile organic compounds and particulate matter derived from cigarette smoke. Chemosphere, 2022, 295, 133942.	8.2	18
39	Do indoor plants contribute to the aeromycota in city buildings?. Aerobiologia, 2013, 29, 321-331.	1.7	17
40	Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15011.	4.1	17
41	A survey of the aeromycota of Sydney and its correspondence with environmental conditions: grass as a component of urban forestry could be a major determinant. Aerobiologia, 2016, 32, 171-185.	1.7	17
42	Effective reduction of roadside air pollution with botanical biofiltration. Journal of Hazardous Materials, 2021, 414, 125566.	12.4	17
43	Reducing Indoor Air Pollutants Through Biotechnology. , 2015, , 181-210.		16
44	Green wall plant tolerance to ambient urban air pollution. Urban Forestry and Urban Greening, 2021, 63, 127201.	5.3	14
45	Characterization and biostimulation of benzene biodegradation in the potting-mix of indoor plants. Journal of Applied Horticulture, 2013, 15, 10-15.	0.2	14
46	Use of subpopulation data in Australian forensic DNA casework. Forensic Science International: Genetics, 2007, 1, 238-246.	3.1	13
47	Daytime behaviour of the grey-headed flying fox Pteropus poliocephalus Temminck (Pteropodidae:) Tj ETQq1 1	0.784314 1.1	rgBT_/Overloo
48	Association of SLC11A1 promoter polymorphisms with the incidence of autoimmune and inflammatory diseases: A meta-analysis. Journal of Autoimmunity, 2008, 31, 42-51.	6.5	12
49	Evaluating and comparing the green wall retrofit suitability across major Australian cities. Journal of Environmental Management, 2021, 298, 113417.	7.8	11
50	The mycological social network a way forward for conservation of fungal biodiversity. Environmental Conservation, 2020, 47, 243-250.	1.3	10
51	Plant physiological mechanisms of air treatment. , 2020, , 219-244.		10
52	Rules of the roost: characteristics of nocturnal communal roosts of rainbow lorikeets (Trichoglossus haematodus, Psittacidae) in an urban environment. Urban Ecosystems, 2015, 18, 489-502.	2.4	8
53	The influence of fire frequency on arbuscular mycorrhizal colonization in the shrub Dillwynia retorta (Wendland) Druce (Fabaceae). Mycorrhiza, 1999, 8, 289-296.	2.8	7
54	Analysis of lighting conditions of indoor living walls: Effects on CO2 removal. Journal of Building Engineering, 2021, 44, 102961.	3.4	7

FRASER R TORPY

#	Article	IF	CITATIONS
55	The botanical biofiltration of elevated air pollution concentrations associated the Black Summer wildfire natural disaster. Journal of Hazardous Materials Letters, 2020, 1, 100003.	3.6	6
56	Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution. Journal of People, Plants, and Environment, 2018, 21, 445-460.	0.6	5
57	Host transmission dynamics of first- and third-stage <i>Angiostrongylus cantonensis</i> larvae in <i>Bullastra lessoni</i> . Parasitology, 2022, 149, 1034-1044.	1.5	5
58	Correspondence Between Urban Bird Roosts and the Presence of Aerosolised Fungal Pathogens. Mycopathologia, 2016, 181, 689-699.	3.1	4
59	Assessing the contribution of fallen autumn leaves to airborne fungi in an urban environment. Urban Ecosystems, 2016, 19, 885-898.	2.4	3
60	Mapping Urban Aerosolized Fungi: Predicting Spatial and Temporal Indoor Concentrations. Human Ecology Review, 2018, 24, 81-103.	0.8	3
61	Partial pancreatic transdifferentiation of primary human hepatocytes in the livers of a humanised mouse model. Journal of Gene Medicine, 2018, 20, e3017.	2.8	2
62	Plant–microbe interaction within phytosystems used for air treatment. , 2020, , 245-262.		2
63	Technological aspects of the removal of air pollutants by phytosystems. , 2020, , 263-281.		1
64	Botanical biofiltration for reducing indoor air pollution. , 2020, , 305-327.		1
65	The evolution of botanical biofilters: Developing practical phytoremediation of air pollution for the built environment. ICRBE Procedia, 0, , 116-129.	0.0	1
66	Phytosystems implementation: examples of application in practice. , 2020, , 283-299.		0
67	Insulin Trafficking in a Glucose Responsive Engineered Human Liver Cell Line is Regulated by the Interaction of ATP-Sensitive Potassium Channels and Voltage-Gated Calcium Channels. , 0, , .		0