
Jeffery R Bloomquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6767580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ion Channels as Targets for Insecticides. Annual Review of Entomology, 1996, 41, 163-190.	11.8	356
2	Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry and Physiology, 2003, 54, 145-156.	1.5	217
3	Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. Pest Management Science, 2015, 71, 808-823.	3.4	143
4	Neurotoxicity and Mode of Action of N, N-Diethyl-Meta-Toluamide (DEET). PLoS ONE, 2014, 9, e103713.	2.5	80
5	Plant Essential Oils Affect the Toxicities of Carbaryl and Permethrin Against <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2013, 50, 826-832.	1.8	75
6	An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Scientific Reports, 2016, 6, 36954.	3.3	55
7	Mode of action of atracotoxin at central and peripheral synapses of insects. Invertebrate Neuroscience, 2003, 5, 45-50.	1.8	49
8	Re-engineering aryl methylcarbamates to confer high selectivity for inhibition of Anopheles gambiae versus human acetylcholinesterase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4593-4598.	2.2	44
9	GABA and Glutamate Receptors as Biochemical Sites for Insecticide Action. , 2001, , 17-41.		43
10	Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pesticide Biochemistry and Physiology, 2008, 91, 17-23.	3.6	42
11	Reduced neuronal sensitivity to dieldrin and picrotoxinin in a cyclodiene-resistant strain ofDrosophila melanogaster (Meigen). Archives of Insect Biochemistry and Physiology, 1992, 19, 17-25.	1.5	41
12	Towards a species-selective acetylcholinesterase inhibitor to control the mosquito vector of malaria, Anopheles gambiae. Chemico-Biological Interactions, 2008, 175, 368-375.	4.0	41
13	Pyrethroid resistance alters the blood-feeding behavior in Puerto Rican Aedes aegypti mosquitoes exposed to treated fabric. PLoS Neglected Tropical Diseases, 2017, 11, e0005954.	3.0	36
14	Is DEET a dangerous neurotoxicant?. Pest Management Science, 2019, 75, 2068-2070.	3.4	36
15	Excitation of central neurons by dieldrin and picrotoxinin in susceptible and resistantDrosophila melanogaster(meigen). Pest Management Science, 1991, 32, 463-469.	0.4	35
16	Amitraz and its metabolite modulate honey bee cardiac function and tolerance to viral infection. Journal of Invertebrate Pathology, 2017, 149, 119-126.	3.2	34
17	Reduced effectiveness of repellents in a pyrethroidâ€resistant strain of <i>Aedes aegypti</i> (Diptera:) Tj ETQq1	1 0.7843 3.4	14 rgBT /Ove
18	Mosquitocidal Activity and Mode of Action of the Isoxazoline Fluralaner. International Journal of	2.6	33

Mosquitocidal Activity and Mode of Action of the Isoxazolir Environmental Research and Public Health, 2017, 14, 154.

2.6 33

#	Article	IF	CITATIONS
19	Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis. Molecules, 2016, 21, 1432.	3.8	32
20	Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. FA¬toterapA¬A¢, 2017, 116, 34-38.	2.2	32
21	Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae. Pesticide Biochemistry and Physiology, 2015, 121, 116-121.	3.6	31
22	Select Small Core Structure Carbamates Exhibit High Contact Toxicity to "Carbamate-Resistant―Strain Malaria Mosquitoes, Anopheles gambiae (Akron). PLoS ONE, 2012, 7, e46712.	2.5	29
23	A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. Open Chemistry, 2017, 15, 156-166.	1.9	28
24	Toxicity, mode of action, and synergist potential of flonicamid against mosquitoes. Pesticide Biochemistry and Physiology, 2018, 151, 3-9.	3.6	27
25	Vapor toxicity of five volatile pyrethroids against <i>Aedes aegypti</i> , <i>Aedes albopictus</i> , <i>Culex quinquefasciatus</i> , and <i>Anopheles quadrimaculatus</i> (Diptera: Culicidae). Pest Management Science, 2018, 74, 2699-2706.	3.4	26
26	Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides. Pesticide Biochemistry and Physiology, 2013, 107, 138-147.	3.6	25
27	Inhibitor profile of bis(n)-tacrines and N-methylcarbamates on acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi. Pesticide Biochemistry and Physiology, 2013, 106, 85-92.	3.6	21
28	Mosquitocidal carbamates with low toxicity to agricultural pests: an advantageous property for insecticide resistance management. Pest Management Science, 2015, 71, 1158-1164.	3.4	21
29	Evaluation of novel carbamate insecticides for neurotoxicity to non-target species. Pesticide Biochemistry and Physiology, 2013, 106, 156-161.	3.6	17
30	Synthesis and structure–activity relationships of carbohydrazides and 1,3,4â€oxadiazole derivatives bearing an imidazolidine moiety against the yellow fever and dengue vector, <scp><i>Aedes aegypti</i></scp> . Pest Management Science, 2018, 74, 413-421.	3.4	17
31	Nematicidal activity of anion transport blockers against <i>Meloidogyne incognita, Caenorhabditis elegans</i> and <i>Heterorhabditis bacteriophora</i> . Pest Management Science, 2008, 64, 646-653.	3.4	16
32	Aryl methylcarbamates: Potency and selectivity towards wild-type and carbamate-insensitive (G119S) Anopheles gambiae acetylcholinesterase, and toxicity to G3 strain An. gambiae. Chemico-Biological Interactions, 2013, 203, 314-318.	4.0	15
33	Toxicology of potassium channel-directed compounds in mosquitoes. NeuroToxicology, 2017, 60, 214-223.	3.0	15
34	Discovery of Species-selective and Resistance-breaking Anticholinesterase Insecticides for the Malaria Mosquito. Current Medicinal Chemistry, 2017, 24, 2946-2958.	2.4	14
35	Pharmacology of central octopaminergic and muscarinic pathways in Drosophila melanogaster larvae: Assessing the target potential of GPCRs. Pesticide Biochemistry and Physiology, 2018, 151, 53-58.	3.6	13
36	Toxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster. Insects, 2017, 8, 2.	2.2	12

JEFFERY R BLOOMQUIST

#	Article	IF	CITATIONS
37	Voltage-gated chloride channel blocker DIDS as an acaricide for Varroa mites. Pesticide Biochemistry and Physiology, 2020, 167, 104603.	3.6	12
38	Co-Toxicity Factor Analysis Reveals Numerous Plant Essential Oils Are Synergists of Natural Pyrethrins against Aedes aegypti Mosquitoes. Insects, 2021, 12, 154.	2.2	11
39	Fatty Acid and Related Potassium Kv2 Channel Blockers: Toxicity and Physiological Actions on Mosquitoes. Insects, 2018, 9, 155.	2.2	10
40	Toxicity and disruption of midgut physiology in larvae of the European corn borer, <i>Ostrinia nubilalis</i> , by anion transporter blockers. Archives of Insect Biochemistry and Physiology, 2009, 70, 151-161.	1.5	9
41	A method for assessing chemically-induced paralysis in headless mosquito larvae. MethodsX, 2015, 2, 19-23.	1.6	9
42	A Survey of Chemoreceptive Responses on Different Mosquito Appendages. Journal of Medical Entomology, 2021, 58, 475-479.	1.8	9
43	Pyrethroid-Derived Acids and Alcohols: Bioactivity and Synergistic Effects on Mosquito Repellency and Toxicity. Journal of Agricultural and Food Chemistry, 2020, 68, 3061-3070.	5.2	9
44	N′-mono- and N, N′-diacyl derivatives of benzyl and arylhydrazines as contact insecticides against adult Anopheles gambiae. Pesticide Biochemistry and Physiology, 2017, 143, 33-38.	3.6	8
45	Asymmetric synthesis and structure-activity studies of the fungal metabolites colletorin A, colletochlorin A and their halogenates analogues. Tetrahedron, 2018, 74, 3912-3923.	1.9	8
46	Resistance to Permethrin, β-cyfluthrin, and Diazinon in Florida Horn Fly Populations. Insects, 2018, 9, 63.	2.2	8
47	Induction and inhibition of an apparent neuronal phenotype in Spodoptera frugiperda insect cells (Sf21) by chemical agents. Invertebrate Neuroscience, 2012, 12, 119-127.	1.8	7
48	Toxicity and Synergistic Activities of Chalcones AgainstAedes aegypti(Diptera: Culicidae) andDrosophila melanogaster(Diptera: Drosophilidae). Journal of Medical Entomology, 2016, 54, tjw183.	1.8	7
49	Nutritional status significantly affects toxicological endpoints in the <scp>CDC</scp> bottle bioassay. Pest Management Science, 2022, 78, 743-748.	3.4	7
50	Blockage of chloride channels and anion transporters with pesticidal natural products and their synthetic analogs. Phytochemistry Reviews, 2011, 10, 217-226.	6.5	6
51	Voltage-sensitive chloride ion channels in Anopheles gambiae Sua-1B cells. Invertebrate Neuroscience, 2013, 13, 57-62.	1.8	6
52	Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): construction, expression and biochemical properties of the G119S orthologous mutant. Parasites and Vectors, 2014, 7, 577.	2.5	6
53	Insecticide sensitivity of native chloride and sodium channels in a mosquito cell line. Pesticide Biochemistry and Physiology, 2016, 130, 59-64.	3.6	6
54	Insecticidal and repellent properties of novel trifluoromethylphenyl amides II. Pesticide Biochemistry and Physiology, 2018, 151, 40-46.	3.6	6

Jeffery R Bloomquist

#	Article	IF	CITATIONS
55	Structure–Activity Relationship Analysis of Potential New Vapor-Active Insect Repellents. Journal of Agricultural and Food Chemistry, 2020, 68, 13960-13969.	5.2	6
56	Mode of action and toxicological effects of the sesquiterpenoid, nootkatone, in insects. Pesticide Biochemistry and Physiology, 2022, 183, 105085.	3.6	6
57	Voltage-Sensitive Potassium Kv2 Channels as New Targets for Insecticides. ACS Symposium Series, 2014, , 71-81.	0.5	5
58	ROLE OF SERUM AND ION CHANNEL BLOCK ON GROWTH AND HORMONALLYâ€INDUCED DIFFERENTIATION OF <i>Spodoptera frugiperda</i> (<i>Sf</i> 21) INSECT CELLS. Archives of Insect Biochemistry and Physiology, 2015, 90, 131-139.	1.5	5
59	Bioactivities and modes of action of VUAA1. Pest Management Science, 2020, 77, 3685-3692.	3.4	5
60	Terpenoid-Induced Feeding Deterrence and Antennal Response of Honey Bees. Insects, 2020, 11, 83.	2.2	5
61	Testing new compounds for efficacy against Varroa destructor and safety to honey bees (Apis) Tj ETQq1 1 0.7843	314 rgBT / 3.4	Oyerlock I
62	Screening for Enhancement of Permethrin Toxicity by Plant Essential Oils Against Adult Females of the Yellow Fever Mosquito (Diptera: Culicidae). Journal of Medical Entomology, 2020, 57, 1149-1156.	1.8	5
63	Bivalent Carbamates as Novel Control Agents of the Malaria Mosquito, <i>Anopheles gambiae</i> . Chimia, 2016, 70, 704-708.	0.6	4
64	Characterizing Permethrin and Etofenprox Resistance in Two Common Laboratory Strains of Anopheles gambiae (Diptera: Culicidae). Insects, 2018, 9, 146.	2.2	4
65	Mosquito Acetylcholinesterase as a Target for Novel Phenyl-Substituted Carbamates. International Journal of Environmental Research and Public Health, 2019, 16, 1500.	2.6	4
66	Toxicity and mode of action of the aporphine plant alkaloid liriodenine on the insect GABA receptor. Toxicon, 2021, 201, 141-147.	1.6	4
67	Recording central neurophysiological output from mosquito larvae for neuropharmacological and insecticide resistance studies. Journal of Insect Physiology, 2021, 135, 104319.	2.0	4
68	Pharmacological Mapping of the Acetylcholinesterase Catalytic Gorge in Mosquitoes with Bis(n)-Tacrines. ACS Symposium Series, 2009, , 143-151.	0.5	3
69	Inhibition of Blattella germanica Acetylcholinesterase by Bis(n)-Tacrines: Prospects for the Molecular Design of a Selective Insecticide for a Household Pest ACS Symposium Series, 2010, , 41-51.	0.5	3
70	Reduced expression of voltage-gated chloride channel genes in Caenorhabditis elegans: Implications for the mode of action of chloride channel-directed nematicides. Pesticide Biochemistry and Physiology, 2010, 97, 161-166.	3.6	3
71	Voltage-sensitive potassium channels expressed after 20-Hydroxyecdysone treatment of a mosquito cell line. Insect Biochemistry and Molecular Biology, 2017, 87, 75-80.	2.7	3
72	Insecticidal and repellent properties of novel trifluoromethylphenyl amides III. Pesticide Biochemistry and Physiology, 2019, 161, 5-11.	3.6	3

JEFFERY R BLOOMQUIST

#	Article	lF	CITATIONS
73	Synergistic effects of potassium channel blockers and pyrethroids: mosquitocidal activity and neuronal mode of action â€. Pest Management Science, 2020, 77, 3673-3684.	3.4	3
74	Heterocyclic Amine-Induced Feeding Deterrence and Antennal Response of Honey Bees. Insects, 2021, 12, 69.	2.2	3
75	Sodium channel-directed alkaloids synergize the mosquitocidal and neurophysiological effects of natural pyrethrins. Pesticide Biochemistry and Physiology, 2022, 186, 105171.	3.6	3
76	Electrophysiological Recording of The Central Nervous System Activity of Third-Instar Drosophila Melanogaster . Journal of Visualized Experiments, 2018, , .	0.3	2
77	Insecticidal Activity and Physiological Actions of Matrine, a Plant Natural Product. ACS Symposium Series, 2018, , 175-186.	0.5	2
78	Induction Coil Heating Improves the Efficiency of Insect Olfactory Studies. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	2
79	Mosquitocidal activity of p,p'-difluoro-diphenyl-trichloroethane (DFDT). Pesticide Biochemistry and Physiology, 2020, 170, 104686.	3.6	2
80	NEUROTOXICOLOGY OF <i>bis</i> (<i>n</i>)â€TACRINES ON <i>Blattella germanica</i> AND <i>Drosophila melanogaster</i> ACETYLCHOLINESTERASE. Archives of Insect Biochemistry and Physiology, 2013, 83, 180-194.	1.5	1
81	Glutamate Receptor-Cation Channel Complex: An Unexploited Target for Mosquito Control. ACS Symposium Series, 2017, , 111-124.	0.5	1
82	Resistance-Breaking Insecticidal Activity of New Spatial Insecticides against Aedes aegypti. Journal of Agricultural and Food Chemistry, 2021, 69, 9684-9692.	5.2	1
83	Enhanced pyrethroid potency in Drosophila melanogaster expressing voltage-gated potassium channel mutants: Insecticidal activity and neuronal action. Pesticide Biochemistry and Physiology, 2021, 178, 104940.	3.6	1
84	Novel pyrethroid derivatives as effective mosquito repellents and repellent synergists. , 2022, , 19-32.		1
85	Studies on the Volatiles Composition of Stored Sheep Wool, and Attractancy toward Aedes aegypti Mosquitoes. Insects, 2022, 13, 208.	2.2	1
86	Insect Voltage-Cated Chloride Channels as a Possible Insecticide Target Site. ACS Symposium Series, 2015, , 447-454.	0.5	0
87	Vapor phase repellency and insecticidal activity of pyridinyl amides against anopheline mosquitoes. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100062.	1.9	0
88	Chemical Treatments for Insect Cell Differentiation: The Effects of 20-Hydroxyecdysone and Veratridine on Cultured Spodoptera frugiperda (Sf21) Insect Cell Ultrastructure. Insects, 2022, 13, 32.	2.2	0