Charlotte Kjaergaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6766768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Policies for wetlands implementation in Denmark and Sweden – historical lessons and emerging issues. Land Use Policy, 2021, 101, 105206.	2.5	15
2	Modelling phosphorus removal efficiency of a reactive filter treating agricultural tile drainage water. Ecological Engineering, 2020, 156, 105968.	1.6	11
3	Nitrate reduction pathways and interactions with iron in the drainage water infiltration zone of a riparian wetland soil. Biogeochemistry, 2020, 150, 235-255.	1.7	15
4	An overview of nutrient transport mitigation measures for improvement of water quality in Denmark. Ecological Engineering, 2020, 155, 105863.	1.6	28
5	Internal hydraulics and wind effect in a surface flow constructed wetland receiving agricultural drainage water. Ecological Engineering, 2020, 144, 105661.	1.6	11
6	Riparian Lowlands in Clay Till Landscapes: Part l—Heterogeneity of Flow Paths and Water Balances. Water Resources Research, 2020, 56, e2019WR025808.	1.7	9
7	Riparian Lowlands in Clay Till Landscapes Part II: Nitrogen Reduction and Release Along Variable Flow Paths. Water Resources Research, 2020, 56, e2019WR025810.	1.7	3
8	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Technology, 2019, 53, 8479-8481.	4.6	29
9	Nitrogen Removal in Woodchipâ€based Biofilters of Variable Designs Treating Agricultural Drainage Discharges. Journal of Environmental Quality, 2019, 48, 1881-1889.	1.0	16
10	Importance of geological information for assessing drain flow in a Danish till landscape. Hydrological Processes, 2019, 33, 450-462.	1.1	10
11	Groundwater dynamics and effect of tile drainage on water flow across the redox interface in a Danish Weichsel till area. Advances in Water Resources, 2019, 123, 23-39.	1.7	22
12	Three Twoâ€Dimensional Approaches for Simulating the Water Flow Dynamics in a Heterogeneous Tileâ€Drained Agricultural Field in Denmark. Soil Science Society of America Journal, 2018, 82, 1367-1383.	1.2	16
13	Modeling Solute Mass Exchange between Pore Regions in Slurry-Injected Soil Columns during Intermittent Irrigation. Vadose Zone Journal, 2018, 17, 180006.	1.3	8
14	Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water. Ecological Engineering, 2018, 120, 94-103.	1.6	29
15	Phosphorus accumulation and stability in sediments of surface-flow constructed wetlands. Geoderma, 2018, 331, 109-120.	2.3	19
16	Convective transport of dissolved gases determines the fate of the greenhouse gases produced in reactive drainage filters. Ecological Engineering, 2017, 98, 1-10.	1.6	15
17	Simulating seasonal variations of tile drainage discharge in an agricultural catchment. Water Resources Research, 2017, 53, 3896-3920.	1.7	43
18	Non-equilibrium model for solute transport in differently designed biofilters targeting agricultural drainage water. Water Science and Technology, 2017, 76, 1324-1331.	1.2	6

Charlotte Kjaergaard

#	Article	IF	CITATIONS
19	Longâ€ŧerm Effects of Organic Waste Fertilizers on Soil Structure, Tracer Transport, and Leaching of Colloids. Journal of Environmental Quality, 2017, 46, 862-870.	1.0	15
20	Heavy Metal Leaching as Affected by Longâ€Time Organic Waste Fertilizer Application. Journal of Environmental Quality, 2017, 46, 871-878.	1.0	10
21	Solute Transport Properties of Fen Peat Differing in Organic Matter Content. Journal of Environmental Quality, 2017, 46, 1106-1113.	1.0	22
22	Agricultural Drainage Filters. I. Filter Hydro-Physical Properties and Tracer Transport. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	11
23	Bacteria as transporters of phosphorus through soil. European Journal of Soil Science, 2016, 67, 99-108.	1.8	4
24	Agricultural Drainage Filters. II. Phosphorus Retention and Release at Different Flow Rates. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	19
25	Solute transport and nitrate removal in full-scale subsurface flow constructed wetlands of various designs treating agricultural drainage water. Ecological Engineering, 2016, 97, 88-97.	1.6	33
26	Nitrogen Removal in Permeable Woodchip Filters Affected by Hydraulic Loading Rate and Woodchip Ratio. Journal of Environmental Quality, 2016, 45, 1688-1695.	1.0	16
27	Tracer, Dissolved Organic Carbon, and Colloid Leaching from Erosionâ€Affected Arable Hillslope Soils. Vadose Zone Journal, 2015, 14, 1-18.	1.3	9
28	Environmental controls of plant species richness in riparian wetlands: Implications for restoration. Basic and Applied Ecology, 2015, 16, 480-489.	1.2	21
29	Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark. Environmental Management, 2015, 56, 1478-1486.	1.2	32
30	Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments: Emission, uptake and controlling factors. Soil Biology and Biochemistry, 2014, 68, 291-299.	4.2	62
31	A Simplified Transfer Function for Estimating Saturated Hydraulic Conductivity of Porous Drainage Filters. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	11
32	Phosphorus release from anaerobic peat soils during convective discharge — Effect of soil Fe:P molar ratio and preferential flow. Geoderma, 2014, 223-225, 21-32.	2.3	44
33	Relating Water and Air Flow Characteristics in Coarse Granular Materials. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	4
34	Relation between soil <scp>P</scp> test values and mobilization of dissolved and particulate <scp>P</scp> from the plough layer of typical <scp>D</scp> anish soils from a longâ€ŧerm field experiment with applied <scp>P</scp> fertilizers. Soil Use and Management, 2013, 29, 297-305.	2.6	13
35	Methane emissions in Danish riparian wetlands: Ecosystem comparison and pursuit of vegetation indexes as predictive tools. Ecological Indicators, 2013, 34, 548-559.	2.6	21
36	Does vivianite control phosphate solubility in anoxic meadow soils?. Geoderma, 2013, 193-194, 189-199.	2.3	48

Charlotte Kjaergaard

#	Article	IF	CITATIONS
37	Greenhouse gas emissions from a Danish riparian wetland before and after restoration. Ecological Engineering, 2013, 57, 170-182.	1.6	60
38	Vivianite Precipitation and Phosphate Sorption following Iron Reduction in Anoxic Soils. Journal of Environmental Quality, 2012, 41, 938-949.	1.0	63
39	Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water. Ecological Engineering, 2012, 46, 75-87.	1.6	48
40	Phosphorus mobilization in rewetted peat and sand at variable flow rate and redox regimes. Geoderma, 2012, 173-174, 311-321.	2.3	47
41	Effect of irrigation regimes on mobilization of nonreactive tracers and dissolved and particulate phosphorus in slurryâ€injected soils. Water Resources Research, 2011, 47, .	1.7	13
42	Interactions between Soil Texture and Placement of Dairy Slurry Application: I. Flow Characteristics and Leaching of Nonreactive Components. Journal of Environmental Quality, 2011, 40, 337-343.	1.0	26
43	Interactions between Soil Texture and Placement of Dairy Slurry Application: II. Leaching of Phosphorus Forms. Journal of Environmental Quality, 2011, 40, 344-351.	1.0	65
44	Risk Predicting of Macropore Flow using Pedotransfer Functions, Textural Maps, and Modeling. Vadose Zone Journal, 2011, 10, 1185-1195.	1.3	31
45	Stream characteristics and their implications for the protection of riparian fens and meadows. Freshwater Biology, 2011, 56, 1893-1903.	1.2	7
46	A Comparative Study of Phosphate Sorption in Lowland Soils under Oxic and Anoxic Conditions. Journal of Environmental Quality, 2010, 39, 734-743.	1.0	41
47	Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. Journal of Environmental Quality, 2009, 38, 1942-1955.	1.0	287
48	Effects of Manure Application and Plowing on Transport of Colloids and Phosphorus to Tile Drains. Vadose Zone Journal, 2006, 5, 445-458.	1.3	84
49	Colloids and Colloidâ€Facilitated Transport of Contaminants in Soils: An Introduction. Vadose Zone Journal, 2004, 3, 321-325.	1.3	161
50	Properties of Waterâ€Dispersible Colloids from Macropore Deposits and Bulk Horizons of an Agrudalf. Soil Science Society of America Journal, 2004, 68, 1844-1852.	1.2	36
51	Waterâ€Dispersible Colloids: Effects of Measurement Method, Clay Content, Initial Soil Matric Potential, and Wetting Rate. Vadose Zone Journal, 2004, 3, 403-412.	1.3	59
52	Colloid Mobilization and Transport in Undisturbed Soil Columns. I. Pore Structure Characterization and Tritium Transport. Vadose Zone Journal, 2004, 3, 413-423.	1.3	47
53	Water-Dispersible Colloids: Effects of Measurement Method, Clay Content, Initial Soil Matric Potential, and Wetting Rate. Vadose Zone Journal, 2004, 3, 403-412.	1.3	21
54	Colloids and Colloid-Facilitated Transport of Contaminants in Soils: An Introduction. Vadose Zone Journal, 2004, 3, 321-325.	1.3	49

#	Article	IF	CITATIONS
55	Colloid Mobilization and Transport in Undisturbed Soil Columns. II. The Role of Colloid Dispersibility and Preferential Flow. Vadose Zone Journal, 2004, 3, 424-433.	1.3	47
56	Colloid Mobilization and Transport in Undisturbed Soil Columns. I. Pore Structure Characterization and Tritium Transport. Vadose Zone Journal, 2004, 3, 413-423.	1.3	25
57	Colloid Mobilization and Transport in Undisturbed Soil Columns. II. The Role of Colloid Dispersibility and Preferential Flow. Vadose Zone Journal, 2004, 3, 424-433.	1.3	20
58	Recovering decomposing plant residues from the particulate soil organic matter fraction: size versus density separation. Biology and Fertility of Soils, 2001, 33, 252-257.	2.3	77
59	Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material. Soil Biology and Biochemistry, 1999, 31, 595-602.	4.2	106