
## Andrew N Staniforth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6766575/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design<br>Considerations and Formulation. Monthly Weather Review, 1998, 126, 1373-1395.                                                        | 1.4 | 900       |
| 2  | Semi-Lagrangian Integration Schemes for Atmospheric Models—A Review. Monthly Weather Review,<br>1991, 119, 2206-2223.                                                                                                       | 1.4 | 899       |
| 3  | An inherently massâ€conserving semiâ€implicit semiâ€Lagrangian discretization of the deepâ€atmosphere<br>global nonâ€hydrostatic equations. Quarterly Journal of the Royal Meteorological Society, 2014, 140,<br>1505-1520. | 2.7 | 333       |
| 4  | The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results. Monthly<br>Weather Review, 1998, 126, 1397-1418.                                                                                     | 1.4 | 283       |
| 5  | Horizontal grids for global weather and climate prediction models: a review. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1-26.                                                                        | 2.7 | 148       |
| 6  | The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes. Monthly Weather Review, 1992, 120, 2622-2632.                                                                                                | 1.4 | 141       |
| 7  | An Efficient Twoâ€Timeâ€Level Semiâ€Lagrangian Semiâ€Implicit Integration Scheme. Quarterly Journal of the<br>Royal Meteorological Society, 1987, 113, 1025-1039.                                                           | 2.7 | 136       |
| 8  | The CMC–MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation.<br>Monthly Weather Review, 2002, 130, 339-356.                                                                               | 1.4 | 135       |
| 9  | Validity of anelastic and other equation sets as inferred from normalâ€mode analysis. Quarterly<br>Journal of the Royal Meteorological Society, 2003, 129, 2761-2775.                                                       | 2.7 | 83        |
| 10 | A Variable-Resolution Finite-Element Technique for Regional Forecasting with the Primitive Equations.<br>Monthly Weather Review, 1978, 106, 439-447.                                                                        | 1.4 | 82        |
| 11 | Spurious Resonant Response of Semi-Lagrangian Discretizations to Orographic Forcing: Diagnosis and Solution. Monthly Weather Review, 1994, 122, 366-376.                                                                    | 1.4 | 82        |
| 12 | SLICE: A Semi-Lagrangian Inherently Conserving and Efficient scheme for transport problems.<br>Quarterly Journal of the Royal Meteorological Society, 2002, 128, 2801-2820.                                                 | 2.7 | 79        |
| 13 | A Variable-Resolution Semi-Lagrangian Finite-Element Global Model of the Shallow-Water Equations.<br>Monthly Weather Review, 1993, 121, 231-243.                                                                            | 1.4 | 73        |
| 14 | A Two-Time-Level Semi-Lagrangian Semi-implicit Scheme for Spectral Models. Monthly Weather Review,<br>1988, 116, 2003-2012.                                                                                                 | 1.4 | 70        |
| 15 | Finite Elements for Shallow-Water Equation Ocean Models. Monthly Weather Review, 1998, 126, 1931-1951.                                                                                                                      | 1.4 | 62        |
| 16 | A monotonic and positive–definite filter for a Semi-Lagrangian Inherently Conserving and Efficient<br>(SLICE) scheme. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2923-2936.                          | 2.7 | 61        |
| 17 | A Semi-Implicit Finite-Element Barotropic Model. Monthly Weather Review, 1977, 105, 154-169.                                                                                                                                | 1.4 | 57        |
| 18 | SLICE-S: A Semi-Lagrangian Inherently Conserving and Efficient scheme for transport problems on the Sphere. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 2649-2664.                                    | 2.7 | 55        |

ANDREW N STANIFORTH

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. Journal of Computational Physics, 2008, 227, 3445-3464. | 3.8 | 54        |
| 20 | A Baroclinic Finite-Element Model for Regional Forecasting with the Primitive Equations. Monthly Weather Review, 1979, 107, 107-121.                                      | 1.4 | 53        |
| 21 | An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Quarterly Journal of the<br>Royal Meteorological Society, 1987, 113, 1025-1039.             | 2.7 | 51        |
| 22 | A Mass-Conserving Semi-Lagrangian Scheme for the Shallow-Water Equations. Monthly Weather Review, 1994, 122, 243-248.                                                     | 1.4 | 47        |
| 23 | The Canadian Regional Data Assimilation System: Operational and Research Applications. Monthly Weather Review, 1994, 122, 1306-1325.                                      | 1.4 | 47        |
| 24 | A proposed baroclinic wave test case for deep―and shallowâ€atmosphere dynamical cores. Quarterly<br>Journal of the Royal Meteorological Society, 2014, 140, 1590-1602.    | 2.7 | 47        |
| 25 | An Accurate and Efficient Finite-Element Global Model of the Shallow-Water Equations. Monthly<br>Weather Review, 1990, 118, 2707-2717.                                    | 1.4 | 46        |
| 26 | Normal modes of deep atmospheres. II: <i>f</i> – <i>F</i> -plane geometry. Quarterly Journal of the Royal<br>Meteorological Society, 2002, 128, 1793-1806.                | 2.7 | 46        |
| 27 | A Semi-implicit Semi-Lagrangian Finite-Element Shallow-Water Ocean Model. Monthly Weather Review, 2000, 128, 1384-1401.                                                   | 1.4 | 45        |
| 28 | Normal modes of deep atmospheres. I: Spherical geometry. Quarterly Journal of the Royal<br>Meteorological Society, 2002, 128, 1771-1792.                                  | 2.7 | 44        |
| 29 | A Finite-Element Formulation for the Vertical Discretization of Sigma-Coordinate Primitive Equation<br>Models. Monthly Weather Review, 1977, 105, 1108-1118.              | 1.4 | 42        |
| 30 | Semi-Implicit Semi-Lagrangian Integration Schemes for a Barotropic Finite-Element Regional Model.<br>Monthly Weather Review, 1986, 114, 2078-2090.                        | 1.4 | 33        |
| 31 | A Diagnostic Analysis of the Superstorm of March 1993. Monthly Weather Review, 1995, 123, 1740-1761.                                                                      | 1.4 | 31        |
| 32 | The impact of a digital filter finalization technique in a global data assimilation system. Tellus, Series<br>A: Dynamic Meteorology and Oceanography, 1995, 47, 304-323. | 1.7 | 29        |
| 33 | Cascade interpolation for semiâ€Lagrangian advection over the sphere. Quarterly Journal of the Royal<br>Meteorological Society, 1999, 125, 1445-1468.                     | 2.7 | 29        |
| 34 | Analysis of Parallel versus Sequential Splittings for Time-Stepping Physical Parameterizations.<br>Monthly Weather Review, 2004, 132, 121-132.                            | 1.4 | 29        |
| 35 | Dispersion analysis of the spectral element method. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1934-1947.                                          | 2.7 | 29        |
| 36 | Variable Resolution and Robustness. Monthly Weather Review, 1992, 120, 2633-2640.                                                                                         | 1.4 | 28        |

ANDREW N STANIFORTH

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Analysis of the numerics of physics–dynamics coupling. Quarterly Journal of the Royal<br>Meteorological Society, 2002, 128, 2779-2799.                                                                                      | 2.7 | 27        |
| 38 | Conservation and Linear Rossby-Mode Dispersion on the Spherical C Grid. Monthly Weather Review, 2004, 132, 641-653.                                                                                                         | 1.4 | 27        |
| 39 | A monotonicallyâ€damping secondâ€orderâ€accurate unconditionallyâ€stable numerical scheme for<br>diffusion. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1559-1573.                                    | 2.7 | 26        |
| 40 | The Deep-Atmosphere Euler Equations in a Generalized Vertical Coordinate. Monthly Weather Review, 2003, 131, 1931-1938.                                                                                                     | 1.4 | 25        |
| 41 | A Simple Comparison of Four Physics–Dynamics Coupling Schemes. Monthly Weather Review, 2002, 130, 3129-3135.                                                                                                                | 1.4 | 23        |
| 42 | The deep-atmosphere Euler equations with a mass-based vertical coordinate. Quarterly Journal of the<br>Royal Meteorological Society, 2003, 129, 1289-1300.                                                                  | 2.7 | 23        |
| 43 | A Stability Analysis of a Family of Baroclinic Semi-Lagrangian Forecast Models. Monthly Weather<br>Review, 1993, 121, 815-824.                                                                                              | 1.4 | 22        |
| 44 | Some numerical properties of approaches to physics–dynamics coupling for NWP. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 27-42.                                                                      | 2.7 | 21        |
| 45 | Stability of Vertical Discretization Schemes for Semi-Implicit Primitive Equation Models: Theory and Application. Monthly Weather Review, 1983, 111, 1189-1207.                                                             | 1.4 | 19        |
| 46 | Mixed Parallel–Sequential-Split Schemes for Time-Stepping Multiple Physical Parameterizations.<br>Monthly Weather Review, 2005, 133, 989-1002.                                                                              | 1.4 | 19        |
| 47 | An inherently massâ€conserving iterative semiâ€implicit semiâ€Lagrangian discretization of the<br>nonâ€hydrostatic verticalâ€slice equations. Quarterly Journal of the Royal Meteorological Society, 2010,<br>136, 799-814. | 2.7 | 19        |
| 48 | The impact of a digital filter finalization technique in a global data assimilation system. Tellus, Series<br>A: Dynamic Meteorology and Oceanography, 1995, 47, 304-323.                                                   | 1.7 | 18        |
| 49 | Analysis of a mixed finiteâ€element pair proposed for an atmospheric dynamical core. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1239-1254.                                                           | 2.7 | 18        |
| 50 | Analysis of semi-Lagrangian trajectory computations. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2065-2085.                                                                                           | 2.7 | 16        |
| 51 | Cascade interpolation for semi-Lagrangian advection over the sphere. Quarterly Journal of the Royal<br>Meteorological Society, 1999, 125, 1445-1468.                                                                        | 2.7 | 16        |
| 52 | An accurate interpolating scheme for semi-Lagrangian advection on an unstructured mesh for ocean modelling. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 49, 119.                                          | 1.7 | 15        |
| 53 | The tangent linear model for semi-Lagrangian schemes: linearizing the process of interpolation.<br>Tellus, Series A: Dynamic Meteorology and Oceanography, 1996, 48, 74-95.                                                 | 1.7 | 14        |
| 54 | The Accuracy of a Finite-Element Vertical Discretization Scheme for Primitive Equation Models:<br>Comparison with a Finite-Difference Scheme. Monthly Weather Review, 1983, 111, 2298-2318.                                 | 1.4 | 13        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Generalized Family of Schemes that Eliminate the Spurious Resonant Response of Semi-Lagrangian<br>Schemes to Orographic Forcing. Monthly Weather Review, 1995, 123, 3605-3613.                     | 1.4 | 13        |
| 56 | Deriving consistent approximate models of the global atmosphere using Hamilton's principle.<br>Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2383-2387.                          | 2.7 | 12        |
| 57 | Impact of semi-Lagrangian trajectories on the discrete normal modes of a non-hydrostatic<br>vertical-column model. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 93-108.         | 2.7 | 11        |
| 58 | An accurate interpolating scheme for semi-Lagrangian advection on an unstructured mesh for ocean modelling. Tellus, Series A: Dynamic Meteorology and Oceanography, 1997, 49, 119-138.               | 1.7 | 10        |
| 59 | A two-dimensional mixed finite-element pair on rectangles. Quarterly Journal of the Royal<br>Meteorological Society, 2014, 140, 930-942.                                                             | 2.7 | 10        |
| 60 | Geophysically Realistic, Ellipsoidal, Analytically Tractable (GREAT) coordinates for atmospheric and oceanic modelling. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1646-1657. | 2.7 | 9         |
| 61 | A Problem with the Robert–Asselin Time Filter for Three-Time-Level Semi-Implicit Semi-Lagrangian<br>Discretizations. Monthly Weather Review, 2004, 132, 600-610.                                     | 1.4 | 8         |
| 62 | An improved regularization for time-staggered discretization and its link to the semi-implicit method.<br>Atmospheric Science Letters, 2006, 7, 21-25.                                               | 1.9 | 8         |
| 63 | Spheroidal and spherical geopotential approximations. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2685-2692.                                                                   | 2.7 | 8         |
| 64 | Energy and energy-like invariants for deep non-hydrostatic atmospheres. Quarterly Journal of the<br>Royal Meteorological Society, 2003, 129, 3495-3499.                                              | 2.7 | 7         |
| 65 | A timeâ€staggered semi‣agrangian discretization of the rotating shallowâ€water equations. Quarterly<br>Journal of the Royal Meteorological Society, 2006, 132, 3107-3116.                            | 2.7 | 7         |
| 66 | Determining nearâ€boundary departure points in semi‣agrangian models. Quarterly Journal of the Royal<br>Meteorological Society, 2009, 135, 1890-1896.                                                | 2.7 | 7         |
| 67 | Exact stationary axisymmetric solutions of the Euler equations on β–γ planes. Atmospheric Science<br>Letters, 2012, 13, 79-87.                                                                       | 1.9 | 7         |
| 68 | The shallowâ€water equations in nonâ€spherical geometry with latitudinal variation of gravity.<br>Quarterly Journal of the Royal Meteorological Society, 2015, 141, 655-662.                         | 2.7 | 6         |
| 69 | Improving Variable-Resolution Finite-Element Semi-Lagrangian Integration Schemes by Pseudostaggering. Monthly Weather Review, 1990, 118, 2718-2731.                                                  | 1.4 | 5         |
| 70 | The tangent linear model for semi-Lagrangian schemes: linearizing the process of interpolation.<br>Tellus, Series A: Dynamic Meteorology and Oceanography, 1996, 48, 74-95.                          | 1.7 | 5         |
| 71 | Preliminary Results from a Dry Global Variable-Resolution Primitive Equations Model. Atmosphere -<br>Ocean, 1997, 35, 245-259.                                                                       | 1.6 | 5         |
| 72 | Cubicâ€spline interpolation on a nonâ€uniform latitude–longitude grid: achieving cross―and circumâ€polar<br>continuity. Atmospheric Science Letters, 2010, 11, 229-238.                              | 1.9 | 5         |

## ANDREW N STANIFORTH

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Exact axisymmetric solutions of the deep―and shallowâ€atmosphere Euler equations in curvilinear and plane geometries. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1113-1120.                                                                                  | 2.7 | 5         |
| 74 | Consistent quasiâ€shallow models of the global atmosphere in nonâ€spherical geopotential coordinates<br>with complete Coriolis force. Quarterly Journal of the Royal Meteorological Society, 2015, 141,<br>979-986.                                                                 | 2.7 | 5         |
| 75 | Semi-Lagrangian integration schemes and their application to environmental flows. , 1990, , 63-79.                                                                                                                                                                                  |     | 5         |
| 76 | A Variable-Resolution Finite-Element Model of Frontogenesis. Monthly Weather Review, 1986, 114, 1340-1353.                                                                                                                                                                          | 1.4 | 4         |
| 77 | André Robert (1929–1993): His Pioneering Contributions to Numerical Modelling. Atmosphere - Ocean,<br>1997, 35, 25-54.                                                                                                                                                              | 1.6 | 4         |
| 78 | Semi-implicit methods, nonlinear balance, and regularized equations. Atmospheric Science Letters, 2007, 8, 1-6.                                                                                                                                                                     | 1.9 | 3         |
| 79 | Comments on Charron et al .'s three recent articles on deriving dynamically consistent equation sets.<br>Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3425-3430.                                                                                               | 2.7 | 3         |
| 80 | Forms of the thermodynamic energy equation for moist air. Quarterly Journal of the Royal<br>Meteorological Society, 2019, 145, 386-393.                                                                                                                                             | 2.7 | 3         |
| 81 | Modifying the conventional threeâ€ŧimeâ€ŀevel semiâ€implicit semi‣agrangian scheme to eliminate<br>orographically induced spurious resonance. Atmosphere - Ocean, 1995, 33, 109-119.                                                                                                | 1.6 | 2         |
| 82 | Comments on 'A finite-element scheme for the vertical discretization in the semi-Lagrangian version of<br>the ECMWF forecast model' by A. Untch and M. Hortal (April B, 2004, <b>130,</b> 1505–1530). Quarterly<br>Journal of the Royal Meteorological Society, 2005, 131, 765-772. | 2.7 | 2         |
| 83 | Analysis of the response to orographic forcing of a timeâ€staggered semiâ€Lagrangian discretization of<br>the rotating shallowâ€water equations. Quarterly Journal of the Royal Meteorological Society, 2006,<br>132, 3117-3126.                                                    | 2.7 | 2         |
| 84 | Analysis of a regularized, time-staggered discretization applied to a vertical slice model. Atmospheric Science Letters, 2006, 7, 86-92.                                                                                                                                            | 1.9 | 2         |
| 85 | Dynamically consistent shallowâ€water equation sets in nonâ€spherical geometry with latitudinal variation of gravity. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2429-2443.                                                                                  | 2.7 | 2         |
| 86 | Validity of anelastic and other equation sets as inferred from normal-mode analysis. Quarterly<br>Journal of the Royal Meteorological Society, 2003, 129, 2761-2775.                                                                                                                | 2.7 | 2         |
| 87 | Numerical weather forecasting research in the Canadian weather service. Telematics and Informatics, 1985, 2, 279-287.                                                                                                                                                               | 5.8 | 1         |
| 88 | An Unsuspected Boundary-Induced Temporal Computational Mode in a Two-Time-Level Discretization.<br>Monthly Weather Review, 2005, 133, 712-720.                                                                                                                                      | 1.4 | 1         |
| 89 | Forecast models for intermediate-range forecasting. Advances in Space Research, 1992, 12, 233-242.                                                                                                                                                                                  | 2.6 | 0         |
| 90 | Deriving Significant-Level Geopotentials from Radiosonde Reports. Monthly Weather Review, 1995, 123, 222-229.                                                                                                                                                                       | 1.4 | 0         |