Juan-Yu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6765316/publications.pdf

Version: 2024-02-01

		687363	888059
18	524	13	17
papers	citations	h-index	g-index
18	18	18	588
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chemical Communications, 2009, , 3273.	4.1	76
2	Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Metals, 2019, 38, 832-839.	7.1	71
3	A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Metals, 2019, 38, 199-205.	7.1	53
4	Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2016, 688, 1072-1079.	5.5	44
5	Effect of particle size distribution on the electrochemical performance of micro-sized silicon-based negative materials. RSC Advances, 2018, 8, 8544-8551.	3.6	44
6	A cycling robust network binder for high performance Si–based negative electrodes for lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 578, 452-460.	9.4	35
7	Preparation of high-purity straight silicon nanowires by molten salt electrolysis. Journal of Energy Chemistry, 2020, 40, 171-179.	12.9	32
8	Pilot-Plant Production of High-Performance Silicon Nanowires by Molten Salt Electrolysis of Silica. Industrial & Engineering Chemistry Research, 2020, 59, 1-8.	3.7	30
9	A compact silicon–carbon composite with an embedded structure for high cycling coulombic efficiency anode materials in lithium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 2487-2496.	6.0	29
10	Electrolytic silicon/graphite composite from SiO2/graphite porous electrode in molten salts as a negative electrode material for lithium-ion batteries. Rare Metals, 2022, 41, 438-447.	7.1	23
11	The preparation of graphite/silicon@carbon composites for lithium-ion batteries through molten salts electrolysis. Journal of Materials Science, 2020, 55, 10155-10167.	3.7	20
12	A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries. Rare Metals, 2021, 40, 2440-2446.	7.1	17
13	Formation of Si nanowires by the electrochemical reduction of SiO ₂ with Ni or NiO additives. Faraday Discussions, 2016, 190, 433-449.	3.2	15
14	Electrochemical preparation of silicon nanowires from porous NiO/SiO2 blocks in molten CaCl2. Materials Letters, 2015, 160, 1-4.	2.6	14
15	In-situ growth of silicon nanowires on graphite by molten salt electrolysis for high performance lithium-ion batteries. Materials Letters, 2020, 273, 127946.	2.6	9
16	Formation of Si nanowires by the electrochemical reduction of porous Ni/SiO 2 blocks in molten CaCl 2. Journal of Physics and Chemistry of Solids, 2016, 89, 1-6.	4.0	6
17	Electrochemical preparation of silicon nanowires from porous Ni/SiO2 blocks in molten CaCl2. Rare Metals, 2019, 38, 776-782.	7.1	6
18	In Situ Formation of Nickel Nanoparticles from Nickel Formate for Preparation of Straight Silicon Nanowires by Molten Salt Electrolysis. ChemistrySelect, 2020, 5, 6305-6311.	1.5	0