Tin Wui Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6765228/publications.pdf

Version: 2024-02-01

128 papers

3,553 citations

34 h-index 54 g-index

131 all docs

131 docs citations

131 times ranked

4739 citing authors

#	Article	IF	CITATIONS
1	Critical material designs for mucus- and mucosa-penetrating oral insulin nanoparticle development. International Materials Reviews, 2023, 68, 121-139.	19.3	11
2	Skin barrier modulation by Hibiscus rosa-sinensis L. mucilage for transdermal drug delivery. Polymer Bulletin, 2022, 79, 3099-3115.	3.3	4
3	Challenges and Complications of Poly(lactic-co-glycolic acid)-Based Long-Acting Drug Product Development. Pharmaceutics, 2022, 14, 614.	4.5	27
4	Critical clinical gaps in cancer precision nanomedicine development. Journal of Controlled Release, 2022, 345, 811-818.	9.9	13
5	Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydrate Polymers, 2022, 290, 119500.	10.2	23
6	Identification of novel biomarkers in prostate cancer diagnosis and prognosis. Journal of Biochemical and Molecular Toxicology, 2022, 36, .	3.0	7
7	Advancing skin delivery of $\hat{l}\pm$ -tocopherol and \hat{l}^3 -tocotrienol for dermatitis treatment via nanotechnology and microwave technology. International Journal of Pharmaceutics, 2021, 593, 120099.	5 . 2	16
8	Design of oral intestinal-specific alginate-vitexin nanoparticulate system to modulate blood glucose level of diabetic rats. Carbohydrate Polymers, 2021, 254, 117312.	10.2	10
9	Effects of Different Formulation Methods on Drug Crystallinity, Drug-Carrier Interaction, and Ex Vivo Permeation of a Ternary Solid Dispersion Containing Nisoldipine. Journal of Pharmaceutical Innovation, 2021, 16, 26-37.	2.4	5
10	In vitro and in vivo particle coating for oral targeting and drug delivery., 2021,, 231-258.		0
11	Synthesis of bio-inspired cellulose nanocrystals-soy protein isolate nanoconjugate for stabilization of oil-in-water Pickering emulsions. Carbohydrate Research, 2021, 504, 108336.	2.3	22
12	Non-dispersive impact technology for powder flow characterization. International Journal of Pharmaceutics, 2021, 605, 120786.	5.2	0
13	Probing Critical Physical Properties of Lactose-Polyethylene Glycol Microparticles in Pulmonary Delivery of Chitosan Nanoparticles. Pharmaceutics, 2021, 13, 1581.	4.5	3
14	Chitosan oleate-tripolyphosphate complex-coated calcium alginate bead: Physicochemical aspects of concurrent core-coat formation. Carbohydrate Polymers, 2021, 273, 118487.	10.2	11
15	Targeting genetic tool for long non-coding RNA of cancer stem cells with aptamer-guided nanocarriers. Expert Opinion on Drug Delivery, 2021, 18, 1791-1793.	5.0	3
16	In vitro Digestion and Swelling Kinetics of Thymoquinone-Loaded Pickering Emulsions Incorporated in Alginate-Chitosan Hydrogel Beads. Frontiers in Nutrition, 2021, 8, 752207.	3.7	9
17	Critical physicochemical attributes of chitosan nanoparticles admixed lactose-PEG 3000 microparticles in pulmonary inhalation. Asian Journal of Pharmaceutical Sciences, 2020, 15, 374-384.	9.1	33
18	A revisit to the effects of zinc salt on skin burn wound healing to reflect the risks in current pharmaceutical care. Journal of Dermatological Treatment, 2020, 31, 651-654.	2.2	1

#	Article	IF	CITATIONS
19	Powder dispersibility characterization using gas-pressurized dispersive technology: Interplay effects of powder mass and powder dispersibility tester contact surfaces. Measurement: Journal of the International Measurement Confederation, 2020, 150, 107066.	5.0	1
20	Choice of nanocarrier for pulmonary delivery of cancer therapeutics. Expert Opinion on Drug Delivery, 2020, 17, 5-7.	5.0	3
21	A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydrate Polymers, 2020, 250, 116800.	10.2	73
22	Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. European Polymer Journal, 2020, 141, 110056.	5.4	5
23	Design of multi-particulate "Dome matrix―with sustained-release melatonin and delayed-release caffeine for jet lag treatment. International Journal of Pharmaceutics, 2020, 587, 119618.	5.2	2
24	In Vitro Hepatic Metabolism of Curcumin Diethyl Disuccinate by Liver S9 from Different Animal Species. Frontiers in Pharmacology, 2020, 11, 577998.	3.5	2
25	Folate-induced nanostructural changes of oligochitosan nanoparticles and their fate of cellular internalization by melanoma. Carbohydrate Polymers, 2020, 244, 116488.	10.2	26
26	Pectin as oral colon-specific nano- and microparticulate drug carriers., 2020,, 257-286.		5
27	Starch as oral colon-specific nano- and microparticulate drug carriers. , 2020, , 287-330.		5
28	Design of polysaccharidic nano-in-micro soft agglomerates as primary oral drug delivery vehicle for colon-specific targeting. Carbohydrate Polymers, 2020, 247, 116673.	10.2	14
29	Transdermal insulin delivery with microwave and fatty acids as permeation enhancers. International Journal of Pharmaceutics, 2020, 584, 119416.	5.2	16
30	Enhancing sustained drug release property of chitosan in spheroids through crosslinking reaction and coacervation. Powder Technology, 2019, 354, 815-821.	4.2	9
31	In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: a Comprehensive Review. AAPS PharmSciTech, 2019, 20, 164.	3.3	36
32	Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. International Journal of Hyperthermia, 2019, 36, 104-114.	2.5	46
33	In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Delivery and Translational Research, 2019, 9, 497-507.	5.8	51
34	Functional Chitosan Carriers for Oral Colon-Specific Drug Delivery. , 2019, , 135-161.		1
35	Alginate Carriers for the Treatment of Ocular Diseases. , 2019, , 535-558.		0
36	Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier. Pure and Applied Chemistry, 2018, 90, 1073-1084.	1.9	8

3

#	Article	IF	CITATIONS
37	5-Fluorouracil ethosomes – skin deposition and melanoma permeation synergism with microwave. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 568-577.	2.8	26
38	Mobile Health Applications for Pediatric Care: Review and Comparison. Therapeutic Innovation and Regulatory Science, 2018, 52, 383-391.	1.6	45
39	Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 139-154.	1.4	40
40	Mobile Health Applications for Caring of Older People: Review and Comparison. Therapeutic Innovation and Regulatory Science, 2018, 52, 374-382.	1.6	41
41	Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polymer Degradation and Stability, 2018, 147, 35-40.	5.8	34
42	Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opinion on Drug Delivery, 2018, 15, 1223-1247.	5.0	19
43	Oral colon cancer targeting by chitosan nanocomposites. , 2018, , 409-429.		11
44	Alginate–C18 Conjugate Nanoparticles Loaded in Tripolyphosphate-Cross-Linked Chitosan–Oleic Acid Conjugate-Coated Calcium Alginate Beads as Oral Insulin Carrier. Molecular Pharmaceutics, 2018, 15, 3369-3382.	4.6	40
45	Optimization of Quercetin loaded Palm Oil Ester Based Nanoemulsion Formulation for Pulmonary Delivery. Journal of Oleo Science, 2018, 67, 933-940.	1.4	26
46	Chitosan-Carboxymethyl-5-Fluorouracil-Folate Conjugate Particles: Microwave Modulated Uptake by Skin and MelanomaÂCells. Journal of Investigative Dermatology, 2018, 138, 2412-2422.	0.7	22
47	Perspectives on reflexology: A qualitative approach. Journal of Traditional and Complementary Medicine, 2017, 7, 327-331.	2.7	25
48	Physicochemical effects of lactose microcarrier on inhalation performance of rifampicin in polymeric nanoparticles. Powder Technology, 2017, 310, 272-281.	4.2	11
49	Online narratives about medical tourism in Malaysia and Thailand: a qualitative content analysis. Journal of Travel and Tourism Marketing, 2017, 34, 821-832.	7.0	23
50	Use of microwave to improve nanomedicine application on skin. Expert Opinion on Drug Delivery, 2017, 14, 283-283.	5.0	0
51	Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Delivery, 2017, 24, 1631-1647.	5.7	58
52	Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydrate Polymers, 2017, 157, 906-919.	10.2	55
53	Content Analysis of Mobile Health Applications on Diabetes Mellitus. Frontiers in Endocrinology, 2017, 8, 318.	3.5	189
54	Enhancement of the production of L-glutaminase, an anticancer enzyme, from Aeromonas veronii by adaptive and induced mutation techniques. PLoS ONE, 2017, 12, e0181745.	2.5	15

#	Article	IF	CITATIONS
55	Editorial: Biodegradable Drug Delivery Systems for Cancer Therapy. Current Drug Delivery, 2017, 14, 1052.	1.6	O
56	Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging. Current Drug Delivery, 2017, 14, 1071-1077.	1.6	17
57	Quercetin-Decorated Curcumin Liposome Design for Cancer Therapy: In-Vitro and In-Vivo Studies. Current Drug Delivery, 2017, 14, 1053-1059.	1.6	19
58	CONSUMPTION OF HERBAL PRODUCTS: A STUDY OF URBAN COMMUNITY SURVEY. Australasian Medical Journal, 2017, 10, .	0.1	6
59	Microcrystalline Cellulose: An Overview. , 2017, , 55-74.		1
60	Microwave-aided skin drug penetration and retention of 5-fluorouracil-loaded ethosomes. Expert Opinion on Drug Delivery, 2016, 13, 1209-1219.	5.0	30
61	Microwave technology enabled transdermal nanocarrier and drug delivery. Asian Journal of Pharmaceutical Sciences, 2016, 11, 43-44.	9.1	1
62	Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment. Carbohydrate Polymers, 2016, 152, 370-381.	10.2	14
63	Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Drug Delivery, 2016, 23, 3520-3528.	5.7	91
64	In Vitro Investigation of Influences of Chitosan Nanoparticles on Fluorescein Permeation into Alveolar Macrophages. Pharmaceutical Research, 2016, 33, 1497-1508.	3.5	9
65	Drug release, preclinical and clinical pharmacokinetics relationships of alginate pellets prepared by melt technology. Expert Opinion on Drug Delivery, 2016, 13, 143-154.	5.0	1
66	Advances in Spray Drying Technology for Nanoparticle Formation. , 2016, , 329-346.		6
67	<l>ln Vitro</l> and <l>ln Vivo</l> Evaluation of Pectin/Copper Exchanged Faujasite Composite Membranes. Journal of Biomedical Nanotechnology, 2015, 11, 1550-1567.	1.1	10
68	Medication Errors in the Southeast Asian Countries: A Systematic Review. PLoS ONE, 2015, 10, e0136545.	2.5	85
69	Chitosan and Its Application as Tissue Engineering Scaffolds. , 2015, , 133-147.		9
70	Nanotechnology-Enabled Drug Delivery for Cancer Therapy. , 2015, , 173-193.		5
71	Natural Polymer/Inorganic Material Based Hybrid Scaffolds for Skin Wound Healing. Polymer Reviews, 2015, 55, 453-490.	10.9	65
72	Glyoxalated chitosan-5-fluorouracil/chitosan-folate as colon-specific and colon cancer cell-targeted device. Journal of Controlled Release, 2015, 213, e105.	9.9	2

#	Article	IF	Citations
73	Revisiting reflexology: Concept, evidence, current practice, and practitioner training. Journal of Traditional and Complementary Medicine, 2015, 5, 197-206.	2.7	72
74	Current Pharmaceutical Design on Adhesive Based Transdermal Drug Delivery Systems. Current Pharmaceutical Design, 2015, 21, 2771-2783.	1.9	11
75	Nanocarriers and their Actions to Improve Skin Permeability and Transdermal Drug Delivery. Current Pharmaceutical Design, 2015, 21, 2848-2866.	1.9	38
76	Oral calcium pectinate-insulin nanoparticles: influences of alginate, sodium chloride and Tween 80 on their blood glucose lowering performance. Journal of Pharmacy and Pharmacology, 2014, 66, 646-657.	2.4	9
77	Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids and Surfaces B: Biointerfaces, 2014, 115, 244-252.	5.0	70
78	Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. Journal of Controlled Release, 2014, 193, 257-269.	9.9	94
79	Evaporation and Diffusion Transport Properties and Mechanical Properties of Alginate Dried Film. Drying Technology, 2014, 32, 117-125.	3.1	10
80	Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development. Expert Opinion on Drug Delivery, 2014, 11, 1419-1434.	5.0	53
81	Transforming large molecular weight pectin and chitosan into oral protein drug nanoparticulate carrier. Reactive and Functional Polymers, 2014, 84, 45-52.	4.1	27
82	Wound healing analysis of pectin/carboxymethyl cellulose/microfibrillated cellulose based composite scaffolds. Materials Letters, 2014, 132, 34-37.	2.6	35
83	Carboxymethylcellulose film for bacterial wound infection control and healing. Carbohydrate Polymers, 2014, 112, 367-375.	10.2	79
84	Oral 5-fluorouracil colon-specific delivery through in vivo pellet coating for colon cancer and aberrant crypt foci treatment. International Journal of Pharmaceutics, 2014, 468, 178-186.	5.2	38
85	Convolution and validation of in vitro–in vivo correlation of water-insoluble sustained-release drug (domperidone) by first-order pharmacokinetic one-compartmental model fitting equation. European Journal of Drug Metabolism and Pharmacokinetics, 2013, 38, 191-200.	1.6	6
86	Design of microcrystalline cellulose-free alginate spheroids by extrusion-spheronization technique. Chemical Engineering Research and Design, 2013, 91, 2437-2446.	5.6	9
87	Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery. Carbohydrate Polymers, 2013, 98, 1083-1094.	10.2	80
88	Faujasites Incorporated Tissue Engineering Scaffolds for Wound Healing: In Vitro and In Vivo Analysis. ACS Applied Materials & Diterfaces, 2013, 5, 11194-11206.	8.0	67
89	Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics. Saudi Pharmaceutical Journal, 2013, 21, 201-213.	2.7	56
90	Design of superdisintegrant- and effervescent agent-less dispersible fast-release melt pellets. Powder Technology, 2013, 235, 289-298.	4.2	6

#	Article	IF	Citations
91	Physicochemical Modulation of Skin Barrier by Microwave for Transdermal Drug Delivery. Pharmaceutical Research, 2013, 30, 90-103.	3.5	35
92	Gas-pressurized dispersive powder flow tester for low volume sample characterization. International Journal of Pharmaceutics, 2013, 448, 150-158.	5.2	3
93	Quality of Inhalation Products: Specifications. , 2013, , 169-190.		1
94	Fast-scan vs conventional differential scanning calorimetry (DSC) techniques in detection of crystallization events of tolbutamide–polyethylene glycol composite. Journal of Thermal Analysis and Calorimetry, 2013, 111, 2195-2202.	3.6	5
95	Nanoparticulate Assembly of Mannuronic Acid-and Guluronic Acid-Rich Alginate: Oral Insulin Carrier and Glucose Binder. Journal of Pharmaceutical Sciences, 2013, 102, 4353-4363.	3.3	15
96	Importance of Wet Packability of Component Particles in Pellet Formation. AAPS PharmSciTech, 2013, 14, 1267-1277.	3.3	10
97	MICROWAVE: EFFECTS AND IMPLICATIONS IN TRANSDERMAL DRUG DELIVERY. Progress in Electromagnetics Research, 2013, 141, 619-643.	4.4	10
98	Blood glucose lowering property of water in oral insulin-fed diabetic rats. Pharmaceutical Biology, 2012, 50, 1463-1466.	2.9	4
99	Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. Journal of Ethnopharmacology, 2012, 142, 776-781.	4.1	182
100	Microwave modified non-crosslinked pectin films with modulated drug release. Pharmaceutical Development and Technology, 2012, 17, 110-117.	2.4	17
101	Sustained-release alginate-chitosan pellets prepared by melt pelletization technique. Drug Development and Industrial Pharmacy, 2012, 38, 1417-1427.	2.0	12
102	Chitosan and Alginate Nanoparticles as Oral Insulin Carrier. , 2012, , 345-374.		0
103	Centrifugal air-assisted melt agglomeration for fast-release "granulet―design. International Journal of Pharmaceutics, 2012, 430, 184-196.	5.2	6
104	Alginate graft copolymers and alginate–co-excipient physical mixture in oral drug delivery. Journal of Pharmacy and Pharmacology, 2011, 63, 1497-1512.	2.4	64
105	Pectin Matrix as Oral Drug Delivery Vehicle for Colon Cancer Treatment. AAPS PharmSciTech, 2011, 12, 201-214.	3.3	166
106	Design of In Situ Dispersible and Calcium Cross-Linked Alginate Pellets as Intestinal-Specific Drug Carrier by Melt Pelletization Technique. Journal of Pharmaceutical Sciences, 2011, 100, 2248-2257.	3.3	18
107	Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. International Journal of Pharmaceutics, 2011, 403, 73-82.	5.2	97
108	Plasticity of hot air-dried mannuronate- and guluronate-rich alginate films. Carbohydrate Polymers, 2010, 81, 104-113.	10.2	35

#	Article	IF	CITATIONS
109	Effects of microwave on drug-release responses of spray-dried alginate microspheres. Drug Development and Industrial Pharmacy, 2010, 36, 1149-1167.	2.0	16
110	Design of oral insulin delivery systems. Journal of Drug Targeting, 2010, 18, 79-92.	4.4	65
111	EFFECTS OF MICROWAVE ON WATER AND ITS INFLUENCE ON DRUG DISSOLUTION. Progress in Electromagnetics Research C, 2009, 11, 121-136.	0.9	7
112	CHITOSAN SPHEROIDS WITH MICROWAVE MODULATED DRUG RELEASE. Progress in Electromagnetics Research, 2009, 99, 355-382.	4.4	13
113	Hypoglycemic effect of quassinoids from Brucea javanica (L.) Merr (Simaroubaceae) seeds. Journal of Ethnopharmacology, 2009, 124, 586-591.	4.1	62
114	Interactive Mixture as a Rapid Drug Delivery System. Drug Development and Industrial Pharmacy, 2008, 34, 206-214.	2.0	5
115	Drug release property of chitosan–pectinate beads and its changes under the influence of microwave. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 176-188.	4.3	48
116	Impact of a Non-meltable Additive on Melt Agglomeration with a Hydrophobic Meltable Binder in High-Shear Mixer. Pharmaceutical Development and Technology, 2007, 12, 371-380.	2.4	0
117	Effects of Microwave on Drug Release Property of Poly(Methyl Vinyl Ether-co-Maleic Acid) Matrix. Drug Development and Industrial Pharmacy, 2007, 33, 737-746.	2.0	18
118	Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 549-557.	2.8	32
119	Aging and microwave effects on alginate/chitosan matrices. Journal of Controlled Release, 2005, 104, 461-475.	9.9	37
120	Investigation of melt agglomeration process with a hydrophobic binder in combination with sucrose stearate. European Journal of Pharmaceutical Sciences, 2003, 19, 381-393.	4.0	9
121	Anti-tack Action of Polyvinylpyrrolidone on Hydroxypropylmethylcellulose Solution Chemical and Pharmaceutical Bulletin, 2003, 51, 107-112.	1.3	27
122	Formation of alginate microspheres produced using emulsification technique. Journal of Microencapsulation, 2003, 20, 401-413.	2.8	11
123	Release characteristics of pectin microspheres prepared by an emulsification technique. Journal of Microencapsulation, 2002, 19, 511-522.	2.8	42
124	Design of controlled-release solid dosage forms of alginate and chitosan using microwave. Journal of Controlled Release, 2002, 84, 99-114.	9.9	131
125	Study of the Melt Pelletization Process Focusing on the Micromeritic Property of Pellets Chemical and Pharmaceutical Bulletin, 2000, 48, 1639-1643.	1.3	6
126	Influence of Production Variables on the Sphericity of Melt Pellets Chemical and Pharmaceutical Bulletin, 2000, 48, 420-424.	1.3	16

Tin Wui Wong

#	Article	IF	CITATIONS
127	A New Method for the Control of Size of Pellets in the Melt Pelletization Process with a High Shear Mixer Chemical and Pharmaceutical Bulletin, 1999, 47, 633-638.	1.3	9
128	Cosmeceuticals. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 287-308.	0.3	2