Tin Wui Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6765228/publications.pdf Version: 2024-02-01

	117625	161849
3,553	34	54
citations	h-index	g-index
131	131	4739
docs citations	times ranked	citing authors
	citations 131	3,553 34 citations h-index 131 131

#	Article	IF	CITATIONS
1	Content Analysis of Mobile Health Applications on Diabetes Mellitus. Frontiers in Endocrinology, 2017, 8, 318.	3.5	189
2	Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. Journal of Ethnopharmacology, 2012, 142, 776-781.	4.1	182
3	Pectin Matrix as Oral Drug Delivery Vehicle for Colon Cancer Treatment. AAPS PharmSciTech, 2011, 12, 201-214.	3.3	166
4	Design of controlled-release solid dosage forms of alginate and chitosan using microwave. Journal of Controlled Release, 2002, 84, 99-114.	9.9	131
5	Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. International Journal of Pharmaceutics, 2011, 403, 73-82.	5.2	97
6	Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. Journal of Controlled Release, 2014, 193, 257-269.	9.9	94
7	Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Drug Delivery, 2016, 23, 3520-3528.	5.7	91
8	Medication Errors in the Southeast Asian Countries: A Systematic Review. PLoS ONE, 2015, 10, e0136545.	2.5	85
9	Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery. Carbohydrate Polymers, 2013, 98, 1083-1094.	10.2	80
10	Carboxymethylcellulose film for bacterial wound infection control and healing. Carbohydrate Polymers, 2014, 112, 367-375.	10.2	79
11	A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydrate Polymers, 2020, 250, 116800.	10.2	73
12	Revisiting reflexology: Concept, evidence, current practice, and practitioner training. Journal of Traditional and Complementary Medicine, 2015, 5, 197-206.	2.7	72
13	Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids and Surfaces B: Biointerfaces, 2014, 115, 244-252.	5.0	70
14	Faujasites Incorporated Tissue Engineering Scaffolds for Wound Healing: In Vitro and In Vivo Analysis. ACS Applied Materials & Interfaces, 2013, 5, 11194-11206.	8.0	67
15	Design of oral insulin delivery systems. Journal of Drug Targeting, 2010, 18, 79-92.	4.4	65
16	Natural Polymer/Inorganic Material Based Hybrid Scaffolds for Skin Wound Healing. Polymer Reviews, 2015, 55, 453-490.	10.9	65
17	Alginate graft copolymers and alginate–co-excipient physical mixture in oral drug delivery. Journal of Pharmacy and Pharmacology, 2011, 63, 1497-1512.	2.4	64
18	Hypoglycemic effect of quassinoids from Brucea javanica (L.) Merr (Simaroubaceae) seeds. Journal of Ethnopharmacology, 2009, 124, 586-591.	4.1	62

#	Article	IF	CITATIONS
19	Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Delivery, 2017, 24, 1631-1647.	5.7	58
20	Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics. Saudi Pharmaceutical Journal, 2013, 21, 201-213.	2.7	56
21	Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydrate Polymers, 2017, 157, 906-919.	10.2	55
22	Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development. Expert Opinion on Drug Delivery, 2014, 11, 1419-1434.	5.0	53
23	In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Delivery and Translational Research, 2019, 9, 497-507.	5.8	51
24	Drug release property of chitosan–pectinate beads and its changes under the influence of microwave. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 176-188.	4.3	48
25	Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. International Journal of Hyperthermia, 2019, 36, 104-114.	2.5	46
26	Mobile Health Applications for Pediatric Care: Review and Comparison. Therapeutic Innovation and Regulatory Science, 2018, 52, 383-391.	1.6	45
27	Release characteristics of pectin microspheres prepared by an emulsification technique. Journal of Microencapsulation, 2002, 19, 511-522.	2.8	42
28	Mobile Health Applications for Caring of Older People: Review and Comparison. Therapeutic Innovation and Regulatory Science, 2018, 52, 374-382.	1.6	41
29	Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 139-154.	1.4	40
30	Alginate–C18 Conjugate Nanoparticles Loaded in Tripolyphosphate-Cross-Linked Chitosan–Oleic Acid Conjugate-Coated Calcium Alginate Beads as Oral Insulin Carrier. Molecular Pharmaceutics, 2018, 15, 3369-3382.	4.6	40
31	Oral 5-fluorouracil colon-specific delivery through in vivo pellet coating for colon cancer and aberrant crypt foci treatment. International Journal of Pharmaceutics, 2014, 468, 178-186.	5.2	38
32	Nanocarriers and their Actions to Improve Skin Permeability and Transdermal Drug Delivery. Current Pharmaceutical Design, 2015, 21, 2848-2866.	1.9	38
33	Aging and microwave effects on alginate/chitosan matrices. Journal of Controlled Release, 2005, 104, 461-475.	9.9	37
34	In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: a Comprehensive Review. AAPS PharmSciTech, 2019, 20, 164.	3.3	36
35	Plasticity of hot air-dried mannuronate- and guluronate-rich alginate films. Carbohydrate Polymers, 2010, 81, 104-113.	10.2	35
36	Physicochemical Modulation of Skin Barrier by Microwave for Transdermal Drug Delivery. Pharmaceutical Research, 2013, 30, 90-103.	3.5	35

#	Article	IF	CITATIONS
37	Wound healing analysis of pectin/carboxymethyl cellulose/microfibrillated cellulose based composite scaffolds. Materials Letters, 2014, 132, 34-37.	2.6	35
38	Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polymer Degradation and Stability, 2018, 147, 35-40.	5.8	34
39	Critical physicochemical attributes of chitosan nanoparticles admixed lactose-PEG 3000 microparticles in pulmonary inhalation. Asian Journal of Pharmaceutical Sciences, 2020, 15, 374-384.	9.1	33
40	Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 549-557.	2.8	32
41	Microwave-aided skin drug penetration and retention of 5-fluorouracil-loaded ethosomes. Expert Opinion on Drug Delivery, 2016, 13, 1209-1219.	5.0	30
42	Anti-tack Action of Polyvinylpyrrolidone on Hydroxypropylmethylcellulose Solution Chemical and Pharmaceutical Bulletin, 2003, 51, 107-112.	1.3	27
43	Transforming large molecular weight pectin and chitosan into oral protein drug nanoparticulate carrier. Reactive and Functional Polymers, 2014, 84, 45-52.	4.1	27
44	Challenges and Complications of Poly(lactic-co-glycolic acid)-Based Long-Acting Drug Product Development. Pharmaceutics, 2022, 14, 614.	4.5	27
45	5-Fluorouracil ethosomes – skin deposition and melanoma permeation synergism with microwave. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 568-577.	2.8	26
46	Optimization of Quercetin loaded Palm Oil Ester Based Nanoemulsion Formulation for Pulmonary Delivery. Journal of Oleo Science, 2018, 67, 933-940.	1.4	26
47	Folate-induced nanostructural changes of oligochitosan nanoparticles and their fate of cellular internalization by melanoma. Carbohydrate Polymers, 2020, 244, 116488.	10.2	26
48	Perspectives on reflexology: A qualitative approach. Journal of Traditional and Complementary Medicine, 2017, 7, 327-331.	2.7	25
49	Online narratives about medical tourism in Malaysia and Thailand: a qualitative content analysis. Journal of Travel and Tourism Marketing, 2017, 34, 821-832.	7.0	23
50	Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydrate Polymers, 2022, 290, 119500.	10.2	23
51	Chitosan-Carboxymethyl-5-Fluorouracil-Folate Conjugate Particles: Microwave Modulated Uptake by Skin and MelanomaÂCells. Journal of Investigative Dermatology, 2018, 138, 2412-2422.	0.7	22
52	Synthesis of bio-inspired cellulose nanocrystals-soy protein isolate nanoconjugate for stabilization of oil-in-water Pickering emulsions. Carbohydrate Research, 2021, 504, 108336.	2.3	22
53	Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opinion on Drug Delivery, 2018, 15, 1223-1247.	5.0	19
54	Quercetin-Decorated Curcumin Liposome Design for Cancer Therapy: In-Vitro and In-Vivo Studies. Current Drug Delivery, 2017, 14, 1053-1059.	1.6	19

#	Article	IF	CITATIONS
55	Effects of Microwave on Drug Release Property of Poly(Methyl Vinyl Ether-co-Maleic Acid) Matrix. Drug Development and Industrial Pharmacy, 2007, 33, 737-746.	2.0	18
56	Design of In Situ Dispersible and Calcium Cross-Linked Alginate Pellets as Intestinal-Specific Drug Carrier by Melt Pelletization Technique. Journal of Pharmaceutical Sciences, 2011, 100, 2248-2257.	3.3	18
57	Microwave modified non-crosslinked pectin films with modulated drug release. Pharmaceutical Development and Technology, 2012, 17, 110-117.	2.4	17
58	Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging. Current Drug Delivery, 2017, 14, 1071-1077.	1.6	17
59	Influence of Production Variables on the Sphericity of Melt Pellets Chemical and Pharmaceutical Bulletin, 2000, 48, 420-424.	1.3	16
60	Effects of microwave on drug-release responses of spray-dried alginate microspheres. Drug Development and Industrial Pharmacy, 2010, 36, 1149-1167.	2.0	16
61	Advancing skin delivery of α-tocopherol and γ-tocotrienol for dermatitis treatment via nanotechnology and microwave technology. International Journal of Pharmaceutics, 2021, 593, 120099.	5.2	16
62	Transdermal insulin delivery with microwave and fatty acids as permeation enhancers. International Journal of Pharmaceutics, 2020, 584, 119416.	5.2	16
63	Nanoparticulate Assembly of Mannuronic Acid-and Guluronic Acid-Rich Alginate: Oral Insulin Carrier and Glucose Binder. Journal of Pharmaceutical Sciences, 2013, 102, 4353-4363.	3.3	15
64	Enhancement of the production of L-glutaminase, an anticancer enzyme, from Aeromonas veronii by adaptive and induced mutation techniques. PLoS ONE, 2017, 12, e0181745.	2.5	15
65	Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment. Carbohydrate Polymers, 2016, 152, 370-381.	10.2	14
66	Design of polysaccharidic nano-in-micro soft agglomerates as primary oral drug delivery vehicle for colon-specific targeting. Carbohydrate Polymers, 2020, 247, 116673.	10.2	14
67	CHITOSAN SPHEROIDS WITH MICROWAVE MODULATED DRUG RELEASE. Progress in Electromagnetics Research, 2009, 99, 355-382.	4.4	13
68	Critical clinical gaps in cancer precision nanomedicine development. Journal of Controlled Release, 2022, 345, 811-818.	9.9	13
69	Sustained-release alginate-chitosan pellets prepared by melt pelletization technique. Drug Development and Industrial Pharmacy, 2012, 38, 1417-1427.	2.0	12
70	Physicochemical effects of lactose microcarrier on inhalation performance of rifampicin in polymeric nanoparticles. Powder Technology, 2017, 310, 272-281.	4.2	11
71	Oral colon cancer targeting by chitosan nanocomposites. , 2018, , 409-429.		11
72	Chitosan oleate-tripolyphosphate complex-coated calcium alginate bead: Physicochemical aspects of concurrent core-coat formation. Carbohydrate Polymers, 2021, 273, 118487.	10.2	11

#	Article	IF	CITATIONS
73	Current Pharmaceutical Design on Adhesive Based Transdermal Drug Delivery Systems. Current Pharmaceutical Design, 2015, 21, 2771-2783.	1.9	11
74	Formation of alginate microspheres produced using emulsification technique. Journal of Microencapsulation, 2003, 20, 401-413.	2.8	11
75	Critical material designs for mucus- and mucosa-penetrating oral insulin nanoparticle development. International Materials Reviews, 2023, 68, 121-139.	19.3	11
76	Importance of Wet Packability of Component Particles in Pellet Formation. AAPS PharmSciTech, 2013, 14, 1267-1277.	3.3	10
77	Evaporation and Diffusion Transport Properties and Mechanical Properties of Alginate Dried Film. Drying Technology, 2014, 32, 117-125.	3.1	10
78	<l>ln Vitro</l> and <l>ln Vivo</l> Evaluation of Pectin/Copper Exchanged Faujasite Composite Membranes. Journal of Biomedical Nanotechnology, 2015, 11, 1550-1567.	1.1	10
79	Design of oral intestinal-specific alginate-vitexin nanoparticulate system to modulate blood glucose level of diabetic rats. Carbohydrate Polymers, 2021, 254, 117312.	10.2	10
80	MICROWAVE: EFFECTS AND IMPLICATIONS IN TRANSDERMAL DRUG DELIVERY. Progress in Electromagnetics Research, 2013, 141, 619-643.	4.4	10
81	A New Method for the Control of Size of Pellets in the Melt Pelletization Process with a High Shear Mixer Chemical and Pharmaceutical Bulletin, 1999, 47, 633-638.	1.3	9
82	Investigation of melt agglomeration process with a hydrophobic binder in combination with sucrose stearate. European Journal of Pharmaceutical Sciences, 2003, 19, 381-393.	4.0	9
83	Design of microcrystalline cellulose-free alginate spheroids by extrusion-spheronization technique. Chemical Engineering Research and Design, 2013, 91, 2437-2446.	5.6	9
84	Oral calcium pectinate-insulin nanoparticles: influences of alginate, sodium chloride and Tween 80 on their blood glucose lowering performance. Journal of Pharmacy and Pharmacology, 2014, 66, 646-657.	2.4	9
85	Chitosan and Its Application as Tissue Engineering Scaffolds. , 2015, , 133-147.		9
86	In Vitro Investigation of Influences of Chitosan Nanoparticles on Fluorescein Permeation into Alveolar Macrophages. Pharmaceutical Research, 2016, 33, 1497-1508.	3.5	9
87	Enhancing sustained drug release property of chitosan in spheroids through crosslinking reaction and coacervation. Powder Technology, 2019, 354, 815-821.	4.2	9
88	In vitro Digestion and Swelling Kinetics of Thymoquinone-Loaded Pickering Emulsions Incorporated in Alginate-Chitosan Hydrogel Beads. Frontiers in Nutrition, 2021, 8, 752207.	3.7	9
89	Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier. Pure and Applied Chemistry, 2018, 90, 1073-1084.	1.9	8
90	EFFECTS OF MICROWAVE ON WATER AND ITS INFLUENCE ON DRUG DISSOLUTION. Progress in Electromagnetics Research C, 2009, 11, 121-136.	0.9	7

#	Article	IF	CITATIONS
91	Identification of novel biomarkers in prostate cancer diagnosis and prognosis. Journal of Biochemical and Molecular Toxicology, 2022, 36, .	3.0	7
92	Study of the Melt Pelletization Process Focusing on the Micromeritic Property of Pellets Chemical and Pharmaceutical Bulletin, 2000, 48, 1639-1643.	1.3	6
93	Centrifugal air-assisted melt agglomeration for fast-release "granulet―design. International Journal of Pharmaceutics, 2012, 430, 184-196.	5.2	6
94	Convolution and validation of in vitro–in vivo correlation of water-insoluble sustained-release drug (domperidone) by first-order pharmacokinetic one-compartmental model fitting equation. European Journal of Drug Metabolism and Pharmacokinetics, 2013, 38, 191-200.	1.6	6
95	Design of superdisintegrant- and effervescent agent-less dispersible fast-release melt pellets. Powder Technology, 2013, 235, 289-298.	4.2	6
96	Advances in Spray Drying Technology for Nanoparticle Formation. , 2016, , 329-346.		6
97	CONSUMPTION OF HERBAL PRODUCTS: A STUDY OF URBAN COMMUNITY SURVEY. Australasian Medical Journal, 2017, 10, .	0.1	6
98	Interactive Mixture as a Rapid Drug Delivery System. Drug Development and Industrial Pharmacy, 2008, 34, 206-214.	2.0	5
99	Fast-scan vs conventional differential scanning calorimetry (DSC) techniques in detection of crystallization events of tolbutamide–polyethylene glycol composite. Journal of Thermal Analysis and Calorimetry, 2013, 111, 2195-2202.	3.6	5
100	Nanotechnology-Enabled Drug Delivery for Cancer Therapy. , 2015, , 173-193.		5
101	Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. European Polymer Journal, 2020, 141, 110056.	5.4	5
102	Pectin as oral colon-specific nano- and microparticulate drug carriers. , 2020, , 257-286.		5
103	Starch as oral colon-specific nano- and microparticulate drug carriers. , 2020, , 287-330.		5
104	Effects of Different Formulation Methods on Drug Crystallinity, Drug-Carrier Interaction, and Ex Vivo Permeation of a Ternary Solid Dispersion Containing Nisoldipine. Journal of Pharmaceutical Innovation, 2021, 16, 26-37.	2.4	5
105	Blood glucose lowering property of water in oral insulin-fed diabetic rats. Pharmaceutical Biology, 2012, 50, 1463-1466.	2.9	4
106	Skin barrier modulation by Hibiscus rosa-sinensis L. mucilage for transdermal drug delivery. Polymer Bulletin, 2022, 79, 3099-3115.	3.3	4
107	Gas-pressurized dispersive powder flow tester for low volume sample characterization. International Journal of Pharmaceutics, 2013, 448, 150-158.	5.2	3
108	Choice of nanocarrier for pulmonary delivery of cancer therapeutics. Expert Opinion on Drug Delivery, 2020, 17, 5-7.	5.0	3

#	Article	IF	CITATIONS
109	Probing Critical Physical Properties of Lactose-Polyethylene Glycol Microparticles in Pulmonary Delivery of Chitosan Nanoparticles. Pharmaceutics, 2021, 13, 1581.	4.5	3
110	Targeting genetic tool for long non-coding RNA of cancer stem cells with aptamer-guided nanocarriers. Expert Opinion on Drug Delivery, 2021, 18, 1791-1793.	5.0	3
111	Glyoxalated chitosan-5-fluorouracil/chitosan-folate as colon-specific and colon cancer cell-targeted device. Journal of Controlled Release, 2015, 213, e105.	9.9	2
112	Design of multi-particulate "Dome matrix―with sustained-release melatonin and delayed-release caffeine for jet lag treatment. International Journal of Pharmaceutics, 2020, 587, 119618.	5.2	2
113	In Vitro Hepatic Metabolism of Curcumin Diethyl Disuccinate by Liver S9 from Different Animal Species. Frontiers in Pharmacology, 2020, 11, 577998.	3.5	2
114	Cosmeceuticals. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 287-308.	0.3	2
115	Quality of Inhalation Products: Specifications. , 2013, , 169-190.		1
116	Microwave technology enabled transdermal nanocarrier and drug delivery. Asian Journal of Pharmaceutical Sciences, 2016, 11, 43-44.	9.1	1
117	Drug release, preclinical and clinical pharmacokinetics relationships of alginate pellets prepared by melt technology. Expert Opinion on Drug Delivery, 2016, 13, 143-154.	5.0	1
118	A revisit to the effects of zinc salt on skin burn wound healing to reflect the risks in current pharmaceutical care. Journal of Dermatological Treatment, 2020, 31, 651-654.	2.2	1
119	Powder dispersibility characterization using gas-pressurized dispersive technology: Interplay effects of powder mass and powder dispersibility tester contact surfaces. Measurement: Journal of the International Measurement Confederation, 2020, 150, 107066.	5.0	1
120	Functional Chitosan Carriers for Oral Colon-Specific Drug Delivery. , 2019, , 135-161.		1
121	Microcrystalline Cellulose: An Overview. , 2017, , 55-74.		1
122	Impact of a Non-meltable Additive on Melt Agglomeration with a Hydrophobic Meltable Binder in High-Shear Mixer. Pharmaceutical Development and Technology, 2007, 12, 371-380.	2.4	0
123	Chitosan and Alginate Nanoparticles as Oral Insulin Carrier. , 2012, , 345-374.		0
124	Use of microwave to improve nanomedicine application on skin. Expert Opinion on Drug Delivery, 2017, 14, 283-283.	5.0	0
125	Editorial: Biodegradable Drug Delivery Systems for Cancer Therapy. Current Drug Delivery, 2017, 14, 1052.	1.6	Ο

126 In vitro and in vivo particle coating for oral targeting and drug delivery. , 2021, , 231-258.

0

0

#	Article	IF	CITATIONS
127	Non-dispersive impact technology for powder flow characterization. International Journal of Pharmaceutics, 2021, 605, 120786.	5.2	0

Alginate Carriers for the Treatment of Ocular Diseases. , 2019, , 535-558.