Kleber Thiago de Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6765135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porphyrins as Catalysts in Scalable Organic Reactions. Molecules, 2016, 21, 310.	3.8	219
2	Sulfonyl Fluoride Synthesis through Electrochemical Oxidative Coupling of Thiols and Potassium Fluoride. Journal of the American Chemical Society, 2019, 141, 11832-11836.	13.7	148
3	Tetrabenzoporphyrins: synthetic developments and applications. Chemical Society Reviews, 2013, 42, 3302.	38.1	123
4	Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Analytica Chimica Acta, 2015, 881, 37-43.	5.4	104
5	Antimicrobial Photodynamic therapy enhanced by the peptide aurein 1.2. Scientific Reports, 2018, 8, 4212.	3.3	74
6	Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein Journal of Organic Chemistry, 2020, 16, 917-955.	2.2	68
7	Chlorin Photosensitizers Sterically Designed To Prevent Self-Aggregation. Journal of Organic Chemistry, 2011, 76, 8824-8832.	3.2	67
8	Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents. Photochemical and Photobiological Sciences, 2014, 13, 1137-1145.	2.9	61
9	Antimicrobial Photodynamic Therapy against Endodontic Enterococcus faecalis and Candida albicans Mono and Mixed Biofilms in the Presence of Photosensitizers: A Comparative Study with Classical Endodontic Irrigants. Frontiers in Microbiology, 2017, 8, 498.	3.5	59
10	Electrochemical Aziridination of Internal Alkenes with Primary Amines. CheM, 2021, 7, 255-266.	11.7	54
11	Porphyrins as Photoredox Catalysts in Csp ² –H Arylations: Batch and Continuous Flow Approaches. Journal of Organic Chemistry, 2018, 83, 15077-15086.	3.2	51
12	Chlorins: Natural Sources, Synthetic Developments and Main Applications. Current Organic Synthesis, 2014, 11, 42-58.	1.3	50
13	Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1131-1174.	0.8	46
14	Synthesis of new amphiphilic chlorin derivatives from protoporphyrin-IX dimethyl ester. Tetrahedron, 2008, 64, 8709-8715.	1.9	43
15	Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 545-550.	3.8	40
16	Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Materials Science and Engineering C, 2020, 108, 110462.	7.3	39
17	Combining batch and continuous flow setups in the end-to-end synthesis of naturally occurring curcuminoids. Reaction Chemistry and Engineering, 2017, 2, 366-374.	3.7	38
18	Synthesis of Phthalocyaninesâ^'ALA Conjugates: Water-Soluble Compounds with Low Aggregation. Journal of Organic Chemistry, 2009, 74, 7962-7965.	3.2	37

#	Article	IF	CITATIONS
19	Continuous Endoperoxidation of Conjugated Dienes and Subsequent Rearrangements Leading to C–H Oxidized Synthons. Journal of Organic Chemistry, 2018, 83, 7574-7585.	3.2	37
20	The Synthesis of Seven-Membered Rings in Natural Products. Studies in Natural Products Chemistry, 2014, , 421-463.	1.8	36
21	Chemical Transformations of Mono―and Bis(butaâ€1,3â€dienâ€1â€yl)porphyrins: A New Synthetic Approach to Mono―and Dibenzoporphyrins. European Journal of Organic Chemistry, 2008, 2008, 704-712.	2.4	35
22	Photophysical properties and photodynamic activity of a novel menthol–zinc phthalocyanine conjugate incorporated in micelles. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253, 22-29.	3.9	34
23	Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach. Journal of Organic Chemistry, 2019, 84, 10459-10471.	3.2	32
24	Synthesis of New Chlorinâ€ <i>e</i> ₆ Trimethyl and Protoporphyrinâ€IX Dimethyl Ester Derivatives and Their Photophysical and Electrochemical Characterizations. Chemistry - A European Journal, 2014, 20, 13644-13655.	3.3	30
25	Core Structure of Eremophilanes and Bakkanes through Niobium Catalyzed Dielsâ	3.2	28
26	Realâ€ŧime mechanistic monitoring of an acetal hydrolysis using ultrafast 2D NMR. Magnetic Resonance in Chemistry, 2012, 50, 496-501.	1.9	28
27	Chemical Transformations and Photophysical Properties of <i>meso</i> â€Tetrathienylâ€Substituted Porphyrin Derivatives. European Journal of Organic Chemistry, 2014, 2014, 4536-4547.	2.4	28
28	Exploiting photooxygenations mediated by porphyrinoid photocatalysts under continuous flow conditions. RSC Advances, 2016, 6, 12717-12725.	3.6	28
29	Photodynamic inactivation mediated by methylene blue or chlorin e6 against Streptococcus mutans biofilm. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101817.	2.6	28
30	Aromaticity and Homoaromaticity in Methano[10]annulenes. Journal of Organic Chemistry, 2007, 72, 76-85.	3.2	27
31	Unsymmetrical 1,5-diaryl-3-oxo-1,4-pentadienyls and their evaluation as antiparasitic agents. Bioorganic and Medicinal Chemistry, 2014, 22, 1121-1127.	3.0	26
32	Synthesis of functionalized chlorins sterically-prevented from self-aggregation. Dyes and Pigments, 2013, 99, 402-411.	3.7	25
33	Linker for Activation of T-cell Family Member2 (LAT2) a Lipid Raft Adaptor Protein for AKT Signaling, Is an Early Mediator of Alkylphospholipid Anti-leukemic Activity. Molecular and Cellular Proteomics, 2012, 11, 1898-1912.	3.8	24
34	New Columnar Zn-Phthalocyanine Designed for Electronic Applications. Journal of Physical Chemistry B, 2012, 116, 13554-13560.	2.6	23
35	Synthesis and photophysical studies of a chlorin sterically designed toÂprevent self-aggregation. Dyes and Pigments, 2013, 98, 153-159.	3.7	23
36	Photolarvicidal effect of curcuminoids from Curcuma longa Linn. against Aedes aegypti larvae. Journal of Asia-Pacific Entomology, 2019, 22, 151-158.	0.9	23

#	Article	IF	CITATIONS
37	Validation of Photodynamic Action via Photobleaching of a New Curcumin-Based Composite with Enhanced Water Solubility. Journal of Fluorescence, 2014, 24, 1407-1413.	2.5	21
38	Curcumin in formulations against Aedes aegypti: Mode of action, photolarvicidal and ovicidal activity. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101840.	2.6	21
39	Luminescent Langmuir–Blodgett film of a new amphiphilic Eu3+ β-diketonate. Journal of Luminescence, 2008, 128, 1339-1347.	3.1	20
40	Exploiting novel process windows for the synthesis of meso-substituted porphyrins under continuous flow conditions. RSC Advances, 2015, 5, 84350-84355.	3.6	20
41	A high efficiency ruthenium(<scp>ii</scp>) tris-heteroleptic dye containing 4,7-dicarbazole-1,10-phenanthroline for nanocrystalline solar cells. RSC Advances, 2016, 6, 46487-46494.	3.6	19
42	Chlorin derivatives sterically-prevented from self-aggregation with high antitumor activity for photodynamic therapy. Dyes and Pigments, 2017, 145, 518-527.	3.7	18
43	Antimicrobial photodynamic therapy against metronidazole-resistant dental plaque bactéria. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111903.	3.8	18
44	Semi-synthesis and PDT activities of a new amphiphilic chlorin derivative. Photodiagnosis and Photodynamic Therapy, 2017, 17, 39-47.	2.6	17
45	Tandem reduction + cyclization of ortho-substituted cinnamic esters. Tetrahedron Letters, 2011, 52, 5371-5374.	1.4	16
46	New porphyrins tailored as biodiesel fluorescent markers. Dyes and Pigments, 2011, 91, 383-388.	3.7	16
47	The Diels–Alder reactions of para-benzoquinone nitrogen-derivatives: an experimental and theoretical study. Tetrahedron, 2014, 70, 6963-6973.	1.9	16
48	Electron-Donor–Acceptor Complex-Enabled Flow Methodology for the Hydrotrifluoromethylation of Unsaturated β-Keto Esters. Organic Letters, 2020, 22, 8598-8602.	4.6	16
49	Photophysical, photooxidation, and biomolecule-interaction of <i>meso</i> -tetra(thienyl)porphyrins containing peripheral Pt(<scp>ii</scp>) and Pd(<scp>ii</scp>) complexes. Insights for photodynamic therapy applications. Dalton Transactions, 2022, 51, 1646-1657.	3.3	16
50	Amphiphilic cerium(III) β-diketonate as a catalyst for reducing diesel/biodiesel soot emissions. Applied Catalysis A: General, 2009, 360, 210-217.	4.3	15
51	Curcumin/dâ€mannitol as photolarvicide: induced delay in larval development time, changes in sex ratio and reduced longevity of <scp><i>Aedes aegypti</i></scp> . Pest Management Science, 2021, 77, 2530-2538.	3.4	15
52	Photodynamic and peptide-based strategy to inhibit Gram-positive bacterial biofilm formation. Biofouling, 2019, 35, 742-757.	2.2	14
53	Photochemical α-Aminonitrile Synthesis Using Zn-Phthalocyanines as Near-Infrared Photocatalysts. Journal of Organic Chemistry, 2022, 87, 5630-5642.	3.2	14
54	Detailed ¹ H and ¹³ C NMR structural assignment and relative stereochemistry determination for three closely related sesquiterpene lactones. Magnetic Resonance in Chemistry, 2008, 46, 576-581.	1.9	13

#	Article	IF	CITATIONS
55	Synthesis of non-aggregating chlorins and isobacteriochlorins from meso-tetrakis(pentafluorophenyl)porphyrin: a study using 1,3-dipolar cycloadditions under mild conditions. Tetrahedron Letters, 2014, 55, 1491-1495.	1.4	13
56	Extração e purificação de clorofila a, da alga Spirulina maxima: um experimento para os cursos de quÃmica. Quimica Nova, 2009, 32, 1670-1672.	0.3	12
57	Synthesis and photophysical evaluations of β-fused uracil-porphyrin derivatives. Tetrahedron, 2013, 69, 9986-9993.	1.9	12
58	A practical deca-gram scale ring expansion of (R)-(â^')-carvone to (R)-(+)-3-methyl-6-isopropenyl-cyclohept-3-enone-1. Organic and Biomolecular Chemistry, 2015, 13, 7633-7642.	2.8	12
59	Process Intensification for Obtaining a Cannabidiol Intermediate by Photo-oxygenation of Limonene under Continuous-Flow Conditions. Organic Process Research and Development, 2020, 24, 2017-2024.	2.7	12
60	Synergetic antimicrobial effect of chlorin e6 and hydrogen peroxide on multi-species biofilms. Biofouling, 2021, 37, 656-665.	2.2	12
61	Improved photodynamic activity of a dual phthalocyanine–ALA photosensitiser. New Journal of Chemistry, 2016, 40, 9666-9671.	2.8	11
62	NIR bacteriochlorin chromophores accessed by Heck and Sonogashira cross-coupling reactions on a tetrabromobacteriochlorin derivative. Organic and Biomolecular Chemistry, 2016, 14, 1402-1412.	2.8	11
63	Influence of light intensity and irradiation mode on methylene blue, chlorin-e6 and curcumin-mediated photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101925.	2.6	11
64	Photodynamic therapy with a new bacteriochlorin derivative: Characterization and in vitro studies. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102251.	2.6	11
65	Solvent-free Diels–Alder reactions catalyzed by FeCl3 on Aerosil® silica. Tetrahedron, 2014, 70, 3231-3238.	1.9	10
66	Direct C–H photoarylation of diazines using aryldiazonium salts and visible-light. RSC Advances, 2020, 10, 31115-31122.	3.6	10
67	Photodynamic inactivation using a chlorin-based photosensitizer with blue or red-light irradiation against single-species biofilms related to periodontitis. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101916.	2.6	10
68	Oxidative Potential of Some Endophytic Fungi Using 1-Indanone as a Substrate. Journal of Microbiology and Biotechnology, 2012, 22, 832-837.	2.1	10
69	Synthesis of an Octaâ€ <i>tert</i> â€butylphthalocyanine: A Lowâ€Aggregating and Photochemically Stable Photosensitizer. European Journal of Organic Chemistry, 2013, 2013, 5028-5031.	2.4	9
70	Inhibiting Charge Recombination in <i>cis</i> -Ru(NCS) ₂ Diimine Sensitizers with Aromatic Substituents. ACS Applied Materials & Interfaces, 2019, 11, 43223-43234.	8.0	9
71	Remarkable Electronic Effect on the <i>meso-</i> Tetra(thienyl)porphyrins. Inorganic Chemistry, 2019, 58, 1030-1039.	4.0	9
72	Design, synthesis and photobiological activity of novel ruthenium phthalocyanine complexes. Inorganic Chemistry Communication, 2019, 99, 60-63.	3.9	9

#	Article	IF	CITATIONS
73	Environmental safety and mode of action of a novel curcumin-based photolarvicide. Environmental Science and Pollution Research, 2020, 27, 29204-29217.	5.3	9
74	Understanding the photophysical properties of rhenium(<scp>i</scp>) compounds coordinated to 4,7-diamine-1,10-phenanthroline: synthetic, luminescence and biological studies. Dalton Transactions, 2020, 49, 16154-16165.	3.3	9
75	Multicomponent reactions mediated by NbCl 5 for the synthesis of phthalonitrile-quinoline dyads: Methodology, scope, mechanistic insights and applications in phthalocyanine synthesis. Dyes and Pigments, 2018, 151, 391-402.	3.7	8
76	Formulations of curcumin and d-mannitol as a photolarvicide against Aedes aegypti larvae: Sublethal photolarvicidal action, toxicity, residual evaluation, and small-scale field trial. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102740.	2.6	8
77	A synthetic approach to bicyclo[6.2.1]undecane ring systems. Tetrahedron Letters, 2003, 44, 2641-2643.	1.4	7
78	Analysis of a cycloheptenone derivative: An experimental and theoretical approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 709-713.	3.9	7
79	The New Directions of Organic Synthesis. Current Organic Synthesis, 2015, 12, 496-522.	1.3	7
80	Basic Concepts and Applications of Porphyrins, Chlorins and Phthalocyanines as Photosensitizers in Photonic Therapies. Revista Virtual De Quimica, 2015, 7, .	0.4	7
81	Antileishmanial activity of amphiphilic chlorin derivatives mediated by photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101769.	2.6	6
82	Cytotoxicity of structurally-modified chlorins aimed for photodynamic therapy applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113647.	3.9	6
83	Direct Synthesis of α-Sulfenylated Ketones under Electrochemical Conditions. Journal of Organic Chemistry, 2022, 87, 5856-5865.	3.2	6
84	Revisiting the stability of endo/exo Diels-Alder adducts between cyclopentadiene and 1,4-benzoquinone. Journal of the Brazilian Chemical Society, 2010, 21, 112-118.	0.6	5
85	Co-Deposition of Gold Nanoparticles and Metalloporphyrin Using the Langmuir–Blodgett (LB) Technique for Surface-Enhanced Raman Scattering (SERS). Applied Spectroscopy, 2015, 69, 451-456.	2.2	5
86	Ion-exchange resin as a new tool for characterisation of coordination compounds and MOFs by NMR spectroscopy. Chemical Communications, 2019, 55, 8106-8109.	4.1	5
87	Soluble and Non-Aggregated Phthalocyanines: Synthesis, Mechanistic Aspects and Their Main Building Blocks. Current Organic Synthesis, 2018, 14, .	1.3	5
88	One-pot sequential functionalizations of meso-tetrathienylporphyrins via Heck–Mizoroki cross-coupling reactions. Tetrahedron Letters, 2016, 57, 3016-3020.	1.4	4
89	Synthesis of multi-substituted pyridines from ylidenemalononitriles and their emission properties. Organic and Biomolecular Chemistry, 2021, 19, 1991-1999.	2.8	3
90	Improved Synthesis of Bioactive Molecules Through Flow Chemistry. Topics in Medicinal Chemistry, 2021, , 317-371.	0.8	3

Kleber Thiago de Oliveira

#	Article	IF	CITATIONS
91	Investigation on the in vitro anti-Trichophyton activity of photosensitizers. Photochemical and Photobiological Sciences, 2022, 21, 1185-1192.	2.9	3
92	Analysis of the1H and13C NMR spectra of bicyclo[6.2.1]undecane ring systems. Magnetic Resonance in Chemistry, 2003, 41, 726-728.	1.9	2
93	Selective Vilsmeier–Haack aryl-formylations of tetrathienylporphyrin and its Ni(II) complex. Journal of Porphyrins and Phthalocyanines, 2015, 19, 745-752.	0.8	2
94	Phototoxicity in a laryngeal cancer cell line enhanced by a targeting amphiphilic chlorin photosensitizer. Photodiagnosis and Photodynamic Therapy, 2017, 19, 355-362.	2.6	2
95	Increasing Scope of Clickable Fluorophores: Electrophilic Substitution of Ylidenemalononitriles. Journal of Organic Chemistry, 2020, 85, 11822-11834.	3.2	2
96	Unequivocal structural assignments of three cycloheptenoid intermediates for guaiane sesquiterpenes: an experimental and theoretical approach. Magnetic Resonance in Chemistry, 2014, 52, 318-328.	1.9	1
97	Synthesis of the bicyclo[6.2.1]undecane ring system by a solvent-free Diels–Alder reaction. Tetrahedron Letters, 2014, 55, 679-681.	1.4	1
98	Synthetic chlorin derivative self-prevented from aggregation: Behavior in homogeneous medium for PDT applications. Journal of Molecular Liquids, 2020, 320, 114363.	4.9	1
99	Essential Oils as Raw Materials in the Synthesis of Anticancer Drugs. , 2015, , 81-109.		1
100	Photodynamic inactivation of Staphylococcus aureus and Escherichia coli using a new bacteriochlorin as photosensitizer. , 2018, , .		1
101	Synthesis of a Naphthalocyanine-Like Dye: The First Report on Zn(II)-1,6-methano[10]annulenecyanine. Molecules, 2020, 25, 2164.	3.8	0
102	Synthesis of meso-N-Phenylmaleimide-porphyrins. , 0, , .		0
103	Synthesis and photophysical studies of a chlorin sterically designed to prevent self-aggregation. , 0, , .		0