Jack L B Line

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6764690/publications.pdf

Version: 2024-02-01

331670 302126 1,711 40 21 39 h-index citations g-index papers 40 40 40 991 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	WODEN: A CUDA-enabled package to simulate low-frequency radio interferometric data. Journal of Open Source Software, 2022, 7, 3676.	4.6	3
2	Investigating the contribution of extended radio sources to the Epoch of Reionization power spectrum. Monthly Notices of the Royal Astronomical Society, 2022, 514, 790-805.	4.4	2
3	Dual polarization measurements of MWA beampatterns at 137 MHz. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1990-2004.	4.4	9
4	A new MWA limit on the 21Âcm power spectrum at redshifts â^⅓13–17. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4775-4790.	4.4	25
5	Simulations of ionospheric refraction on radio interferometric data. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	3
6	Epoch of reionization power spectrum limits from Murchison Widefield Array data targeted at EoR1 field. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5954-5971.	4.4	14
7	A map of diffuse radio emission at 182 MHz to enhance epoch of reionization observations in the Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2021, 510, 2011-2024.	4.4	12
8	The MWA long baseline Epoch of reionisation surveyâ€"I. Improved source catalogue for the EoR O field. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	5
9	Murchison Widefield Array detection of steep-spectrum, diffuse, non-thermal radio emission within Abell 1127. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	15
10	The impact of tandem redundant/sky-based calibration in MWA Phase II data analysis. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	8
11	Modelling and peeling extended sources with shapelets: A Fornax A case study. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	11
12	Deep multiredshift limits on Epoch of Reionization 21Âcm power spectra from four seasons of Murchison Widefield Array observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4711-4727.	4.4	129
13	EMBERS: Experimental Measurement of BEam Responses with Satellites. Journal of Open Source Software, 2020, 5, 2629.	4.6	2
14	Improving the Epoch of Reionization Power Spectrum Results from Murchison Widefield Array Season 1 Observations. Astrophysical Journal, 2019, 884, 1.	4.5	92
15	Robust statistics towards detection of the 21Âcm signal from the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5766-5784.	4.4	4
16	Detectability of 21 cm-signal during the Epoch of Reionization with 21 cm-Lyman-α emitter cross-correlation – II. Foreground contamination. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2767-2776.	4.4	9
17	Assessment of lonospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array. Astrophysical Journal, 2018, 867, 15.	4.5	17
18	<i>In situ</i> measurement of MWA primary beam variation using <i>ORBCOMM</i> . Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	24

#	Article	IF	CITATIONS
19	Comparing Redundant and Sky-model-based Interferometric Calibration: A First Look with Phase II of the MWA. Astrophysical Journal, 2018, 863, 170.	4.5	41
20	Measuring the global 21-cm signal with the MWA-I: improved measurements of the Galactic synchrotron background using lunar occultation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5034-5045.	4.4	20
21	The jet/wind outflow in Centaurus A: a local laboratory for AGN feedback. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4056-4072.	4.4	20
22	PUMA: The Positional Update and Matching Algorithm. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	31
23	Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies. Astrophysical Journal, 2017, 838, 68.	4.5	23
24	Extragalactic Peaked-spectrum Radio Sources at Low Frequencies. Astrophysical Journal, 2017, 836, 174.	4.5	112
25	A High-Resolution Foreground Model for the MWA EoR1 Field: Model and Implications for EoR Power Spectrum Analysis. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	25
26	A search for long-time-scale, low-frequency radio transients. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1944-1953.	4.4	30
27	Foreground mitigation strategy for measuring the 21Âcm-LAE cross-correlation. Proceedings of the International Astronomical Union, 2017, 12, 292-295.	0.0	O
28	LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE. Astrophysical Journal, 2016, 830, 38.	4.5	58
29	DELAY SPECTRUM WITH PHASE-TRACKING ARRAYS: EXTRACTING THE H i POWER SPECTRUM FROM THE EPOCH OF REIONIZATION. Astrophysical Journal, 2016, 833, 213.	4.5	15
30	FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7. Astrophysical Journal, 2016, 833, 102.	4.5	147
31	THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS. Astrophysical Journal, 2016, 819, 8.	4.5	65
32	A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoRO field. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4151-4175.	4.4	27
33	THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY. Astrophysical Journal, 2016, 825, 114.	4.5	67
34	First limits on the 21Âcm power spectrum during the Epoch of X-ray heating. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4320-4347.	4.4	79
35	Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1057-1070.	4.4	68
36	CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR. Astrophysical Journal, 2016, 818, 139.	4.5	98

#	Article	IF	CITATION
37	Empirical covariance modeling for 21Âcm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data. Physical Review D, 2015, 91, .	4.7	99
38	CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal Letters, 2015, 807, L28.	8.3	73
39	The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	107
40	FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal, 2015, 804, 14.	4. 5	122