Richard M Durbin

List of Publications by Citations

Source: https://exaly.com/author-pdf/6764460/richard-m-durbin-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

249 papers 167,841 citations

108 h-index 280 g-index

280 ext. papers

214,227 ext. citations

avg, IF

8.73 L-index

#	Paper	IF	Citations
249	The Sequence Alignment/Map format and SAMtools. <i>Bioinformatics</i> , 2009 , 25, 2078-9	7.2	30805
248	Fast and accurate short read alignment with Burrows-Wheeler transform. <i>Bioinformatics</i> , 2009 , 25, 175	4 - 60	26095
247	Initial sequencing and analysis of the human genome. <i>Nature</i> , 2001 , 409, 860-921	50.4	17366
246	A global reference for human genetic variation. <i>Nature</i> , 2015 , 526, 68-74	50.4	8599
245	Fast and accurate long-read alignment with Burrows-Wheeler transform. <i>Bioinformatics</i> , 2010 , 26, 589-	9 5 .2	6791
244	The variant call format and VCFtools. <i>Bioinformatics</i> , 2011 , 27, 2156-8	7.2	6200
243	A map of human genome variation from population-scale sequencing. <i>Nature</i> , 2010 , 467, 1061-73	50.4	6142
242	An integrated map of genetic variation from 1,092 human genomes. <i>Nature</i> , 2012 , 491, 56-65	50.4	6049
241	Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. <i>Nature</i> , 2003 , 421, 231-7	50.4	2758
240	The Pfam protein families database. <i>Nucleic Acids Research</i> , 2004 , 32, D138-41	20.1	2720
239	Accurate whole human genome sequencing using reversible terminator chemistry. <i>Nature</i> , 2008 , 456, 53-9	50.4	2615
238	Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids 1998,		2271
237	Mapping short DNA sequencing reads and calling variants using mapping quality scores. <i>Genome Research</i> , 2008 , 18, 1851-8	9.7	2002
236	The Pfam protein families database. <i>Nucleic Acids Research</i> , 2002 , 30, 276-80	20.1	1839
235	Pfam: clans, web tools and services. <i>Nucleic Acids Research</i> , 2006 , 34, D247-51	20.1	1784
234	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. <i>Nature</i> , 2004 , 428, 493-521	50.4	1689
233	GeneWise and Genomewise. <i>Genome Research</i> , 2004 , 14, 988-95	9.7	1467

232	A reference panel of 64,976 haplotypes for genotype imputation. <i>Nature Genetics</i> , 2016 , 48, 1279-83	36.3	1447
231	Inference of human population history from individual whole-genome sequences. <i>Nature</i> , 2011 , 475, 493-6	50.4	1299
230	Mouse genomic variation and its effect on phenotypes and gene regulation. <i>Nature</i> , 2011 , 477, 289-94	50.4	1087
229	The Pfam protein families database. <i>Nucleic Acids Research</i> , 2000 , 28, 263-6	20.1	1074
228	Population genomics of domestic and wild yeasts. <i>Nature</i> , 2009 , 458, 337-41	50.4	1073
227	Pfam: a comprehensive database of protein domain families based on seed alignments. <i>Proteins:</i> Structure, Function and Bioinformatics, 1997 , 28, 405-20	4.2	841
226	EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. <i>Genome Research</i> , 2009 , 19, 327-35	9.7	836
225	The DNA sequence of the human X chromosome. <i>Nature</i> , 2005 , 434, 325-37	50.4	822
224	Ensembl 2012. Nucleic Acids Research, 2012, 40, D84-90	20.1	798
223	The UK10K project identifies rare variants in health and disease. <i>Nature</i> , 2015 , 526, 82-90	50.4	776
222	The diploid genome sequence of an Asian individual. <i>Nature</i> , 2008 , 456, 60-5	50.4	744
221	Reference-based phasing using the Haplotype Reference Consortium panel. <i>Nature Genetics</i> , 2016 , 48, 1443-1448	36.3	699
220	The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. <i>PLoS Biology</i> , 2003 , 1, E45	9.7	677
219	Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. <i>Nature</i> , 2010 , 464, 721-7	50.4	668
218	Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. <i>Nature Genetics</i> , 2008 , 40, 722-9	36.3	666
217	An analogue approach to the travelling salesman problem using an elastic net method. <i>Nature</i> , 1987 , 326, 689-91	50.4	602
216	Ensembl 2011. Nucleic Acids Research, 2011 , 39, D800-6	20.1	590
215	RNA sequence analysis using covariance models. <i>Nucleic Acids Research</i> , 1994 , 22, 2079-88	20.1	586

214	A large genome center@improvements to the Illumina sequencing system. <i>Nature Methods</i> , 2008 , 5, 1005-10	21.6	575
213	Mapping cis- and trans-regulatory effects across multiple tissues in twins. <i>Nature Genetics</i> , 2012 , 44, 10	08 40 3	572
212	Inferring human population size and separation history from multiple genome sequences. <i>Nature Genetics</i> , 2014 , 46, 919-25	36.3	569
211	A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. <i>Gene</i> , 1995 , 167, GC1-10	3.8	563
210	The InterPro Database, 2003 brings increased coverage and new features. <i>Nucleic Acids Research</i> , 2003 , 31, 315-8	20.1	556
209	WormBase: a multi-species resource for nematode biology and genomics. <i>Nucleic Acids Research</i> , 2004 , 32, D411-7	20.1	543
208	A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. <i>Nature Biotechnology</i> , 2008 , 26, 779-85	44.5	533
207	Insights into hominid evolution from the gorilla genome sequence. <i>Nature</i> , 2012 , 483, 169-75	50.4	517
206	Efficient de novo assembly of large genomes using compressed data structures. <i>Genome Research</i> , 2012 , 22, 549-56	9.7	501
205	The Sequence Ontology: a tool for the unification of genome annotations. <i>Genome Biology</i> , 2005 , 6, Reference of the control of the unification of genome annotations.	4418.3	492
204	BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. <i>Nature Methods</i> , 2008 , 5, 409-15	21.6	484
203	Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. <i>GigaScience</i> , 2013 , 2, 10	7.6	461
202	Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. <i>Nature Protocols</i> , 2012 , 7, 500-7	18.8	460
201	InterPro, progress and status in 2005. <i>Nucleic Acids Research</i> , 2005 , 33, D201-5	20.1	426
200	Systematic analysis of human protein complexes identifies chromosome segregation proteins. <i>Science</i> , 2010 , 328, 593-9	33.3	419
199	The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. <i>Genome Research</i> , 2009 , 19, 1316-23	9.7	415
198	TreeFam: a curated database of phylogenetic trees of animal gene families. <i>Nucleic Acids Research</i> , 2006 , 34, D572-80	20.1	383
197	Revising the human mutation rate: implications for understanding human evolution. <i>Nature Reviews Genetics</i> , 2012 , 13, 745-53	30.1	369

(2016-2017)

196	Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. <i>Genome Research</i> , 2017 , 27, 849-864	9.7	365
195	Assemblathon 1: a competitive assessment of de novo short read assembly methods. <i>Genome Research</i> , 2011 , 21, 2224-41	9.7	364
194	Patterns of cis regulatory variation in diverse human populations. <i>PLoS Genetics</i> , 2012 , 8, e1002639	6	361
193	A dimension reduction framework for understanding cortical maps. <i>Nature</i> , 1990 , 343, 644-7	50.4	346
192	Dindel: accurate indel calls from short-read data. <i>Genome Research</i> , 2011 , 21, 961-73	9.7	341
191	The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. <i>PLoS Genetics</i> , 2011 , 7, e1002003	6	336
190	Earth BioGenome Project: Sequencing life for the future of life. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4325-4333	11.5	334
189	POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans. <i>Science</i> , 2015 , 349, aab3884	33.3	317
188	An overview of Ensembl. <i>Genome Research</i> , 2004 , 14, 925-8	9.7	316
187	Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. <i>Nature</i> , 2015 , 526, 112-7	50.4	308
186	Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks. <i>Neural Computation</i> , 1989 , 1, 133-142	2.9	305
185	A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. <i>PLoS Computational Biology</i> , 2010 , 6, e1000770	5	295
184	Common genetic variation drives molecular heterogeneity in human iPSCs. <i>Nature</i> , 2017 , 546, 370-375	50.4	294
183	WormBase: a comprehensive resource for nematode research. <i>Nucleic Acids Research</i> , 2010 , 38, D463-7	20.1	289
182	Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. <i>American Journal of Human Genetics</i> , 2013 , 93, 876-90	11	269
181	A genomic history of Aboriginal Australia. <i>Nature</i> , 2016 , 538, 207-214	50.4	268
180	Using GeneWise in the Drosophila annotation experiment. <i>Genome Research</i> , 2000 , 10, 547-8	9.7	263
179	BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. <i>Bioinformatics</i> , 2016 , 32, 1749-51	7.2	256

178	Distribution and medical impact of loss-of-function variants in the Finnish founder population. <i>PLoS Genetics</i> , 2014 , 10, e1004494	6	243
177	Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). <i>Bioinformatics</i> , 2014 , 30, 1266-72	7.2	241
176	Ensembl@ 10th year. Nucleic Acids Research, 2010, 38, D557-62	20.1	240
175	TreeFam: 2008 Update. Nucleic Acids Research, 2008, 36, D735-40	20.1	234
174	Trait variation in yeast is defined by population history. <i>PLoS Genetics</i> , 2011 , 7, e1002111	6	230
173	Variation graph toolkit improves read mapping by representing genetic variation in the reference. <i>Nature Biotechnology</i> , 2018 , 36, 875-879	44.5	223
172	Identifying and removing haplotypic duplication in primary genome assemblies. <i>Bioinformatics</i> , 2020 , 36, 2896-2898	7.2	222
171	QuickTree: building huge Neighbour-Joining trees of protein sequences. <i>Bioinformatics</i> , 2002 , 18, 1546	5-7 ₇ .2	214
170	Structure and expression of the Huntington@ disease gene: evidence against simple inactivation due to an expanded CAG repeat. <i>Somatic Cell and Molecular Genetics</i> , 1994 , 20, 27-38		210
169	A high-definition view of functional genetic variation from natural yeast genomes. <i>Molecular Biology and Evolution</i> , 2014 , 31, 872-88	8.3	206
168	Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. <i>Science</i> , 2015 , 350, 1493-1498	33.3	204
167	Did Our Species Evolve in Subdivided Populations across Africa, and Why Does It Matter?. <i>Trends in Ecology and Evolution</i> , 2018 , 33, 582-594	10.9	2 00
166	Prepublication data sharing. <i>Nature</i> , 2009 , 461, 168-70	50.4	197
165	Insights into human genetic variation and population history from 929 diverse genomes. <i>Science</i> , 2020 , 367,	33.3	196
164	Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. <i>Nature Communications</i> , 2015 , 6, 8111	17.4	186
163	Health and population effects of rare gene knockouts in adult humans with related parents. <i>Science</i> , 2016 , 352, 474-7	33.3	185
162	Gene expression changes with age in skin, adipose tissue, blood and brain. <i>Genome Biology</i> , 2013 , 14, R75	18.3	185
161	Revealing the genetic structure of a trait by sequencing a population under selection. <i>Genome Research</i> , 2011 , 21, 1131-8	9.7	185

(2015-2017)

160	Contrasting evolutionary genome dynamics between domesticated and wild yeasts. <i>Nature Genetics</i> , 2017 , 49, 913-924	36.3	178	
159	Maximum discrimination hidden Markov models of sequence consensus. <i>Journal of Computational Biology</i> , 1995 , 2, 9-23	1.7	167	
158	Efficient construction of an assembly string graph using the FM-index. <i>Bioinformatics</i> , 2010 , 26, i367-73	7.2	164	
157	The first horse herders and the impact of early Bronze Age steppe expansions into Asia. <i>Science</i> , 2018 , 360,	33.3	162	
156	Towards complete and error-free genome assemblies of all vertebrate species. <i>Nature</i> , 2021 , 592, 737-7	'\$6 .4	161	
155	Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1940-1955	12.3	160	
154	WormBase 2012: more genomes, more data, new website. <i>Nucleic Acids Research</i> , 2012 , 40, D735-41	20.1	159	
153	Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. <i>Genome Research</i> , 1999 , 9, 815-24	9.7	141	
152	Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. <i>Nature Genetics</i> , 2015 , 47, 88-91	36.3	140	
151	WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. <i>Nucleic Acids Research</i> , 2005 , 33, D383-9	20.1	140	
150	The population history of northeastern Siberia since the Pleistocene. <i>Nature</i> , 2019 , 570, 182-188	50.4	137	
149	InterPro: an integrated documentation resource for protein families, domains and functional sites. <i>Briefings in Bioinformatics</i> , 2002 , 3, 225-35	13.4	137	
148	An Analysis of the Elastic Net Approach to the Traveling Salesman Problem. <i>Neural Computation</i> , 1989 , 1, 348-358	2.9	137	
147	Comparative sequence analysis of the human and pufferfish Huntington@disease genes. <i>Nature Genetics</i> , 1995 , 10, 67-76	36.3	135	
146	Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. <i>Nature Communications</i> , 2016 , 7, 12039	17.4	124	
145	High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. <i>Genome Biology</i> , 2012 , 13, 26	18.3	122	
144	SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. <i>Genome Research</i> , 2011 , 21, 952-60	9.7	117	
143	The genomic and phenotypic diversity of Schizosaccharomyces pombe. <i>Nature Genetics</i> , 2015 , 47, 235-4	1 36.3	111	

142	A computational scan for U12-dependent introns in the human genome sequence. <i>Nucleic Acids Research</i> , 2001 , 29, 4006-13	20.1	110
141	Extending reference assembly models. <i>Genome Biology</i> , 2015 , 16, 13	18.3	107
140	Tracing the route of modern humans out of Africa by using 225 human genome sequences from Ethiopians and Egyptians. <i>American Journal of Human Genetics</i> , 2015 , 96, 986-91	11	107
139	The complete sequence of a human genome <i>Science</i> , 2022 , 376, 44-53	33.3	107
138	Analysis of protein domain families in Caenorhabditis elegans. <i>Genomics</i> , 1997 , 46, 200-16	4.3	106
137	De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. <i>Scientific Reports</i> , 2017 , 7, 3935	4.9	101
136	Iron Age and Anglo-Saxon genomes from East England reveal British migration history. <i>Nature Communications</i> , 2016 , 7, 10408	17.4	100
135	Comparative ab initio prediction of gene structures using pair HMMs. <i>Bioinformatics</i> , 2002 , 18, 1309-18	7.2	93
134	High-resolution mapping of complex traits with a four-parent advanced intercross yeast population. <i>Genetics</i> , 2013 , 195, 1141-55	4	91
133	WormBase 2007. Nucleic Acids Research, 2008, 36, D612-7	20.1	91
132	Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. <i>Nature Genetics</i> , 2018 , 50, 1574-1583	36.3	91
131			
-)-	Immunofluorescence Analysis and Diagnosis of Primary Ciliary Dyskinesia with Radial Spoke Defects. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 53, 563-73	5.7	90
130	Immunofluorescence Analysis and Diagnosis of Primary Ciliary Dyskinesia with Radial Spoke Defects. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 53, 563-73 WormBase: a cross-species database for comparative genomics. <i>Nucleic Acids Research</i> , 2003 , 31, 133-7		
	Defects. American Journal of Respiratory Cell and Molecular Biology, 2015 , 53, 563-73		
130	Defects. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 563-73 WormBase: a cross-species database for comparative genomics. Nucleic Acids Research, 2003, 31, 133-7 Mapping trait loci by use of inferred ancestral recombination graphs. American Journal of Human	20.1	90
130 129	Defects. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 563-73 WormBase: a cross-species database for comparative genomics. Nucleic Acids Research, 2003, 31, 133-7 Mapping trait loci by use of inferred ancestral recombination graphs. American Journal of Human Genetics, 2006, 79, 910-22 Genetic interactions affecting human gene expression identified by variance association mapping.	20.1	90 8 ₇ 86
130 129 128	Defects. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 563-73 WormBase: a cross-species database for comparative genomics. Nucleic Acids Research, 2003, 31, 133-7 Mapping trait loci by use of inferred ancestral recombination graphs. American Journal of Human Genetics, 2006, 79, 910-22 Genetic interactions affecting human gene expression identified by variance association mapping. ELife, 2014, 3, e01381	20.1 11 8.9	90 87 86

(2017-2016)

124	DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2016 , 55, 213-24	5.7	79
123	WormBase: new content and better access. <i>Nucleic Acids Research</i> , 2007 , 35, D506-10	20.1	76
122	Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. <i>American Journal of Human Genetics</i> , 2017 , 100, 865-884	11	74
121	A High-Quality Genome Assembly from a Single Mosquito Using PacBio Sequencing. <i>Genes</i> , 2019 , 10,	4.2	72
120	Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. <i>Nature Methods</i> , 2020 , 17, 615-620	21.6	69
119	Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement. <i>Annals of Clinical and Translational Neurology</i> , 2015 , 2, 492-509	5.3	69
118	WormBase: better software, richer content. <i>Nucleic Acids Research</i> , 2006 , 34, D475-8	20.1	68
117	GAZE: a generic framework for the integration of gene-prediction data by dynamic programming. <i>Genome Research</i> , 2002 , 12, 1418-27	9.7	65
116	Gene structure conservation aids similarity based gene prediction. <i>Nucleic Acids Research</i> , 2004 , 32, 776	5 -83 .1	62
115	Software for genome mapping by fingerprinting techniques. <i>Bioinformatics</i> , 1988 , 4, 125-32	7.2	61
114	Clustering of phosphorylation site recognition motifs can be exploited to predict the targets of cyclin-dependent kinase. <i>Genome Biology</i> , 2007 , 8, R23	18.3	60
113	The complete sequence of a human genome		58
112	TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization. <i>American Journal of Human Genetics</i> , 2016 , 99, 460-9	11	58
111	Joint genetic analysis of gene expression data with inferred cellular phenotypes. <i>PLoS Genetics</i> , 2011 , 7, e1001276	6	57
110	Whole-genome sequence-based analysis of thyroid function. <i>Nature Communications</i> , 2015 , 6, 5681	17.4	56
109	Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 17713-8	11.5	56
108	A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database. <i>Genome Biology</i> , 2007 , 8, R90	18.3	53
107	Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes. <i>Nature Communications</i> , 2017 , 8, 303	17.4	52

106	Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences. <i>Genome Biology</i> , 2014 , 15, R88	18.3	51
105	Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy. <i>American Journal of Human Genetics</i> , 2016 , 98, 358-62	11	49
104	No evidence for maintenance of a sympatric species barrier by chromosomal inversions. <i>Evolution Letters</i> , 2017 , 1, 138-154	5.3	49
103	A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans. <i>Nature Communications</i> , 2014 , 5, 4871	17.4	46
102	Image analysis of restriction enzyme fingerprint autoradiograms. <i>Bioinformatics</i> , 1989 , 5, 101-6	7.2	45
101	A workbench for large-scale sequence homology analysis. <i>Bioinformatics</i> , 1994 , 10, 301-7	7.2	44
100	Extent, causes, and consequences of small RNA expression variation in human adipose tissue. <i>PLoS Genetics</i> , 2012 , 8, e1002704	6	43
99	Enhanced protein domain discovery by using language modeling techniques from speech recognition. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 4516-20	11.5	42
98	Detecting archaic introgression using an unadmixed outgroup. <i>PLoS Genetics</i> , 2018 , 14, e1007641	6	42
97	Whole-genome view of the consequences of a population bottleneck using 2926 genome sequences from Finland and United Kingdom. <i>European Journal of Human Genetics</i> , 2017 , 25, 477-484	5-3	41
96	Ancestral Hybridization Facilitated Species Diversification in the Lake Malawi Cichlid Fish Adaptive Radiation. <i>Molecular Biology and Evolution</i> , 2020 , 37, 1100-1113	8.3	41
95	Copy number variant detection in inbred strains from short read sequence data. <i>Bioinformatics</i> , 2010 , 26, 565-7	7.2	40
94	A probabilistic model of 3@nd formation in Caenorhabditis elegans. <i>Nucleic Acids Research</i> , 2004 , 32, 3392-9	20.1	40
93	Quantitative genetics of CTCF binding reveal local sequence effects and different modes of X-chromosome association. <i>PLoS Genetics</i> , 2014 , 10, e1004798	6	38
92	Towards complete and error-free genome assemblies of all vertebrate species		38
91	Enrichment of low-frequency functional variants revealed by whole-genome sequencing of multiple isolated European populations. <i>Nature Communications</i> , 2017 , 8, 15927	17.4	37
90	A graph-based approach to diploid genome assembly. <i>Bioinformatics</i> , 2018 , 34, i105-i114	7.2	36
89	Genome Graphs		34

(2020-2014)

88	Managing clinically significant findings in research: the UK10K example. <i>European Journal of Human Genetics</i> , 2014 , 22, 1100-4	5.3	33
87	Efficiently inferring the demographic history of many populations with allele count data. <i>Journal of the American Statistical Association</i> , 2020 , 115, 1472-1487	2.8	33
86	Deep short-read sequencing of chromosome 17 from the mouse strains A/J and CAST/Ei identifies significant germline variation and candidate genes that regulate liver triglyceride levels. <i>Genome Biology</i> , 2009 , 10, R112	18.3	32
85	A high-content platform to characterise human induced pluripotent stem cell lines. <i>Methods</i> , 2016 , 96, 85-96	4.6	28
84	Alfrescoa workbench for comparative genomic sequence analysis. <i>Genome Research</i> , 2000 , 10, 1148-57	7 9.7	27
83	Identity-by-descent-based phasing and imputation in founder populations using graphical models. <i>Genetic Epidemiology</i> , 2011 , 35, 853-60	2.6	26
82	Haplotype-aware graph indexes. <i>Bioinformatics</i> , 2020 , 36, 400-407	7.2	23
81	Whole-exome sequencing of 228 patients with sporadic Parkinson@ disease. <i>Scientific Reports</i> , 2017 , 7, 41188	4.9	21
80	Estimation of epistatic variance components and heritability in founder populations and crosses. <i>Genetics</i> , 2014 , 198, 1405-16	4	19
79	Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. <i>Genome Biology</i> , 2021 , 22, 120	18.3	19
78	The ACEDB Genome Database 1994 , 45-55		19
77	The anatomy of successful computational biology software. <i>Nature Biotechnology</i> , 2013 , 31, 894-7	44.5	18
76	Homozygous loss-of-function variants in European cosmopolitan and isolate populations. <i>Human Molecular Genetics</i> , 2015 , 24, 5464-74	5.6	18
75	Gene expression and development databases for C. elegans. <i>Seminars in Cell and Developmental Biology</i> , 1997 , 8, 459-67	7.5	17
74	Whole genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow		17
73	A genome-wide survey of genetic variation in gorillas using reduced representation sequencing. <i>PLoS ONE</i> , 2013 , 8, e65066	3.7	16
72	A Method for Checking Genomic Integrity in Cultured Cell Lines from SNP Genotyping Data. <i>PLoS ONE</i> , 2016 , 11, e0155014	3.7	16
71	Population-scale proteome variation in human induced pluripotent stem cells. <i>ELife</i> , 2020 , 9,	8.9	16

70	Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. <i>Cell Reports</i> , 2019 , 26, 2078-2087.e3	16
69	Using reference-free compressed data structures to analyze sequencing reads from thousands of human genomes. <i>Genome Research</i> , 2017 , 27, 300-309	15
68	The Earth BioGenome Project 2020: Starting the clock <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	15
67	A reference panel of 64,976 haplotypes for genotype imputation	15
66	Enhanced protein domain discovery using taxonomy. <i>BMC Bioinformatics</i> , 2004 , 5, 56 3.6	14
65	The C. elegans expression pattern database: a beginning. <i>Trends in Genetics</i> , 1996 , 12, 370-371 8.5	14
64	Diffraction methods for biological macromolecules. Oscillation method with large unit cells. Methods in Enzymology, 1985, 114, 211-37 1.7	14
63	htsget: a protocol for securely streaming genomic data. <i>Bioinformatics</i> , 2019 , 35, 119-121 7.2	13
62	Accounting for Non-genetic Factors Improves the Power of eQTL Studies 2008, 411-422	13
61	Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly	13
60	Sequence assembly with CAFTOOLS. <i>Genome Research</i> , 1998 , 8, 260-7	12
59	Method for calculation of probability of matching a bounded regular expression in a random data string. <i>Journal of Computational Biology</i> , 1995 , 2, 25-31	12
58	Late Quaternary dynamics of Arctic biota from ancient environmental genomics. <i>Nature</i> , 2021 , 600, 86-930.4	12
57	Insights into human genetic variation and population history from 929 diverse genomes	12
56	Crumble: reference free lossy compression of sequence quality values. <i>Bioinformatics</i> , 2019 , 35, 337-339 _{7.2}	11
55	WormBase: Annotating many nematode genomes. <i>Worm</i> , 2012 , 1, 15-21	11
54	Vertebrate gene finding from multiple-species alignments using a two-level strategy. <i>Genome Biology</i> , 2006 , 7 Suppl 1, S6.1-12	11
53	A direct multi-generational estimate of the human mutation rate from autozygous segments seen in thousands of parentally related individuals	11

52	Sequence variation aware genome references and read mapping with the variation graph toolkit		11
51	Genomix: a method for combining gene-finders predictions, which uses evolutionary conservation of sequence and intron-exon structure. <i>Bioinformatics</i> , 2007 , 23, 1468-75	7.2	10
50	A table-driven, full-sensitivity similarity search algorithm. <i>Journal of Computational Biology</i> , 2003 , 10, 103-17	1.7	9
49	Sequence locally, think globally: The Darwin Tree of Life Project <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	9
48	trio-sga: facilitating de novo assembly of highly heterozygous genomes with parent-child trios		9
47	Haplotype-aware graph indexes		9
46	souporcell: Robust clustering of single cell RNAseq by genotype and ambient RNA inference without reference genotypes		9
45	A haplotype-aware de novo assembly of related individuals using pedigree sequence graph. <i>Bioinformatics</i> , 2020 , 36, 2385-2392	7.2	9
44	Removing reference bias and improving indel calling in ancient DNA data analysis by mapping to a sequence variation graph. <i>Genome Biology</i> , 2020 , 21, 250	18.3	9
43	A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia illucens L.). <i>G3: Genes, Genomes, Genetics</i> , 2021 , 11,	3.2	9
42	Inferring selection on amino acid preference in protein domains. <i>Molecular Biology and Evolution</i> , 2009 , 26, 527-36	8.3	7
41	A conserved sequence motif in 3Quntranslated regions of ribosomal protein mRNAs in nematodes. <i>Rna</i> , 2006 , 12, 1786-9	5.8	7
40	Multiple laboratory mouse reference genomes define strain specific haplotypes and novel functional loci		7
39	Base qualities help sequencing software. <i>Genome Research</i> , 1998 , 8, 161-2	9.7	6
38	Why sequence all eukaryotes?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	6
37	The rate of false polymorphisms introduced when imputing genotypes from global imputation panels		6
36	A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning. <i>GigaScience</i> , 2020 , 9,	7.6	6
35	Environmental genomics of Late Pleistocene black bears and giant short-faced bears. <i>Current Biology</i> , 2021 , 31, 2728-2736.e8	6.3	6

34	Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age. <i>G3: Genes, Genomes, Genetics</i> , 2015 , 5, 839-47	3.2	5
33	Whole-exome sequencing in an isolated population from the Dalmatian island of Vis. <i>European Journal of Human Genetics</i> , 2016 , 24, 1479-87	5.3	5
32	Complete vertebrate mitogenomes reveal widespread gene duplications and repeats		5
31	Removing reference bias and improving indel calling in ancient DNA data analysis by mapping to a sequence variation graph		5
30	The genome sequence of the brown trout, Linnaeus 1758. Wellcome Open Research, 2021, 6, 108	4.8	5
29	Standards recommendations for the Earth BioGenome Project <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	4
28	Inferring human population size and separation history from multiple genome sequences		4
27	Health and population effects of rare gene knockouts in adult humans with related parents		4
26	Ethical, legal, and social issues in the Earth BioGenome Project <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	3
25	Placing ancient DNA sequences into reference phylogenies Molecular Biology and Evolution, 2022,	8.3	3
24	The C. elegans expression pattern database: a beginning 1996 , 12, 370-370		3
23	Reference-based phasing using the Haplotype Reference Consortium panel		3
22	Identifying and removing haplotypic duplication in primary genome assemblies		3
21	False gene and chromosome losses affected by assembly and sequence errors		3
20	Genomic consequences of domestication of the Siamese fighting fish Science Advances, 2022, 8, eabm	4 9 5 <u>0</u>	3
19	Viral coinfection analysis using a MinHash toolkit. <i>BMC Bioinformatics</i> , 2019 , 20, 389	3.6	2
18	The genome sequence of the Eurasian red squirrel, Linnaeus 1758. <i>Wellcome Open Research</i> , 2020 , 5, 18	4.8	2
17	GFAKluge: A C++ library and command line utilities for the Graphical Fragment Assembly formats. <i>Journal of Open Source Software</i> , 2019 , 4,	5.2	2

LIST OF PUBLICATIONS

16	Mapping epigenetic divergence in the massive radiation of Lake Malawi cichlid fishes. <i>Nature Communications</i> , 2021 , 12, 5870	17.4	2
15	A haplotype-aware de novo assembly of related individuals using pedigree graph		2
14	Placing ancient DNA sequences into reference phylogenies		2
13	Ancestral hybridisation facilitated species diversification in the Lake Malawi cichlid fish adaptive radiation	on	2
12	The genome sequence of the ringlet, Aphantopus hyperantus Linnaeus 1758. <i>Wellcome Open Research</i> ,6, 165	4.8	2
11	Epigenetic Divergence during Early Stages of Speciation in an African Crater Lake Cichlid Fish		2
10	The genome sequence of the eastern grey squirrel, Gmelin, 1788. Wellcome Open Research, 2020, 5, 27	4.8	1
9	The genome sequence of the Eurasian river otter, Lutra lutra Linnaeus 1758. <i>Wellcome Open Research</i> , 2020 , 5, 33	4.8	1
8	Mapping epigenetic divergence in the massive radiation of Lake Malawi cichlid fishes		1
7	The population history of northeastern Siberia since the Pleistocene		1
6	Genomic consequences of domestication of the Siamese fighting fish		1
5	Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells		1
4	Differential use of multiple genetic sex determination systems in divergent ecomorphs of an African crater lake cichlid		1
3	[X]uniqMAP: unique gene sequence regions in the human and mouse genomes. <i>BMC Genomics</i> , 2006 , 7, 249	4.5	0
2	Efficient iterative Hi-C scaffolder based on N-best neighbors. <i>BMC Bioinformatics</i> , 2021 , 22, 569	3.6	0
1	The genome sequence of the European golden eagle, Linnaeus 1758. <i>Wellcome Open Research</i> , 2021 , 6, 112	4.8	Ο