Gerard D Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6764283/publications.pdf

Version: 2024-02-01

284 papers 34,795 citations

5876 81 h-index 176 g-index

297 all docs

297 docs citations

times ranked

297

35065 citing authors

#	Article	IF	CITATIONS
1	Antibiotic resistanceâ€"the need for global solutions. Lancet Infectious Diseases, The, 2013, 13, 1057-1098.	4.6	3,184
2	CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 2017, 45, D566-D573.	6.5	2,063
3	Antibiotic resistance is ancient. Nature, 2011, 477, 457-461.	13.7	1,967
4	Antibacterial drug discovery in the resistance era. Nature, 2016, 529, 336-343.	13.7	1,628
5	The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 2013, 57, 3348-3357.	1.4	1,615
6	Sampling the Antibiotic Resistome. Science, 2006, 311, 374-377.	6.0	1,319
7	The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Reviews Microbiology, 2007, 5, 175-186.	13.6	1,065
8	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
9	Antibiotic resistance in the environment: a link to the clinic?. Current Opinion in Microbiology, 2010, 13, 589-594.	2.3	638
10	Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry, 1991, 30, 10408-10415.	1.2	628
11	Bacterial resistance to antibiotics: Enzymatic degradation and modification. Advanced Drug Delivery Reviews, 2005, 57, 1451-1470.	6.6	627
12	Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome. PLoS ONE, 2012, 7, e34953.	1.1	541
13	Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nature Reviews Microbiology, 2019, 17, 141-155.	13.6	526
14	Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014, 510, 503-506.	13.7	461
15	Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nature Chemical Biology, 2011, 7, 348-350.	3.9	447
16	Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 2013, 303, 287-292.	1.5	434
17	Antibiotic Adjuvants: Rescuing Antibiotics from Resistance. Trends in Microbiology, 2016, 24, 862-871.	3.5	412
18	Bacterial resistance to aminoglycoside antibiotics. Trends in Microbiology, 1997, 5, 234-240.	3.5	357

#	Article	IF	CITATIONS
19	Streptogramins, Oxazolidinones, and Other Inhibitors of Bacterial Protein Synthesis. Chemical Reviews, 2005, 105, 529-542.	23.0	325
20	Molecular mechanisms of antibiotic resistance. Chemical Communications, 2011, 47, 4055.	2.2	302
21	The tetracycline resistome. Cellular and Molecular Life Sciences, 2010, 67, 419-431.	2.4	292
22	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	1.8	275
23	TetX Is a Flavin-dependent Monooxygenase Conferring Resistance to Tetracycline Antibiotics. Journal of Biological Chemistry, 2004, 279, 52346-52352.	1.6	260
24	Opportunities for natural products in 21 st century antibiotic discovery. Natural Product Reports, 2017, 34, 694-701.	5.2	246
25	Expanding the soil antibiotic resistome: exploring environmental diversity. Current Opinion in Microbiology, 2007, 10, 481-489.	2.3	240
26	Structure of an Enzyme Required for Aminoglycoside Antibiotic Resistance Reveals Homology to Eukaryotic Protein Kinases. Cell, 1997, 89, 887-895.	13.5	236
27	Aminoglycoside-modifying enzymes. Current Opinion in Microbiology, 1999, 2, 499-503.	2.3	226
28	The antibiotic resistance "mobilome― searching for the link between environment and clinic. Frontiers in Microbiology, 2013, 4, 138.	1.5	221
29	Something old, something new: revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology, 2014, 60, 147-154.	0.8	207
30	Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nature Biotechnology, 2013, 31, 922-927.	9.4	206
31	New strategies for combating multidrug-resistant bacteria. Trends in Molecular Medicine, 2007, 13, 260-267.	3.5	200
32	Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Reviews in Molecular Medicine, 2011, 13, e5.	1.6	195
33	Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to \hat{l}^2 -Lactams. ACS Chemical Biology, 2013, 8, 226-233.	1.6	184
34	Bacterial proteases, untapped antimicrobial drug targets. Journal of Antibiotics, 2017, 70, 366-377.	1.0	182
35	Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature, 2020, 578, 582-587.	13.7	177
36	Assembling the glycopeptide antibiotic scaffold: The biosynthesis of from Streptomyces toyocaensis NRRL15009. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8962-8967.	3.3	174

#	Article	IF	CITATIONS
37	Glycopeptide antibiotic biosynthesis. Journal of Antibiotics, 2014, 67, 31-41.	1.0	170
38	Tigecycline Is Modified by the Flavin-Dependent Monooxygenase TetX. Biochemistry, 2005, 44, 11829-11835.	1.2	169
39	Crossâ€species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Molecular Systems Biology, 2011, 7, 499.	3.2	169
40	Acyldepsipeptide Antibiotics Induce the Formation of a Structured Axial Channel in ClpP: A Model for the ClpX/ClpA-Bound State of ClpP. Chemistry and Biology, 2010, 17, 959-969.	6.2	168
41	Resisting resistance: new chemical strategies for battling superbugs. Chemistry and Biology, 2000, 7, R127-R132.	6.2	163
42	New Targets and Screening Approaches in Antimicrobial Drug Discovery. Chemical Reviews, 2005, 105, 759-774.	23.0	161
43	An ecological perspective of microbial secondary metabolism. Current Opinion in Biotechnology, 2011, 22, 552-558.	3.3	160
44	Antifungal Drugs: The Current Armamentarium and Development of New Agents. Microbiology Spectrum, 2016, 4, .	1.2	159
45	Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4886-4891.	3.3	155
46	A diverse intrinsic antibiotic resistome from a cave bacterium. Nature Communications, 2016, 7, 13803.	5. 8	148
47	Combinatorial strategies for combating invasive fungal infections. Virulence, 2017, 8, 169-185.	1.8	146
48	Purification and characterization of VanR and the cytosolic domain of VanS: A two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry, 1993, 32, 5057-5063.	1.2	145
49	GLYCOPEPTIDEANTIBIOTICRESISTANCE. Annual Review of Pharmacology and Toxicology, 2002, 42, 381-408.	4.2	145
50	Introduction:  Antibiotic Resistance. Chemical Reviews, 2005, 105, 391-394.	23.0	144
51	Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2015, 6, 1036.	1.5	144
52	The antibiotic resistome: what's new?. Current Opinion in Microbiology, 2014, 21, 45-50.	2.3	143
53	Design of Bifunctional Antibiotics that Target Bacterial rRNA and Inhibit Resistance-Causing Enzymes. Journal of the American Chemical Society, 2000, 122, 5230-5231.	6.6	142
54	The Prehistory of Antibiotic Resistance. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025197.	2.9	141

#	Article	IF	CITATIONS
55	D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6480-6483.	3.3	139
56	Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure, 1999, 7, 497-507.	1.6	137
57	Mechanisms of resistance to antibiotics. Current Opinion in Chemical Biology, 2003, 7, 563-569.	2.8	137
58	Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Molecular Microbiology, 2004, 52, 1107-1121.	1.2	136
59	A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nature Chemical Biology, 2010, 6, 327-329.	3.9	135
60	Q&A: Antibiotic resistance: where does it come from and what can we do about it?. BMC Biology, 2010, 8, 123.	1.7	129
61	Lessons from the Environmental Antibiotic Resistome. Annual Review of Microbiology, 2017, 71, 309-329.	2.9	127
62	Overexpression, Purification, and Characterization of VanX, a D-, D-Dipeptidase which Is Essential for Vancomycin Resistance in Enterococcus faecium BM4147. Biochemistry, 1995, 34, 2455-2463.	1.2	125
63	Antibiotics: A New Hope. Chemistry and Biology, 2012, 19, 3-10.	6.2	122
64	Solving the Antibiotic Crisis. ACS Infectious Diseases, 2015, 1, 80-84.	1.8	119
65	Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome. Emerging Infectious Diseases, 2013, 19, .	2.0	118
66	Aminoglycoside Antibiotics. Advances in Experimental Medicine and Biology, 1998, , 27-69.	0.8	116
67	Antibiotic resistance is ancient: implications for drug discovery. Trends in Microbiology, 2012, 20, 157-159.	3.5	116
68	The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chemical Reviews, 2021, 121, 3464-3494.	23.0	114
69	Unlocking the potential of natural products in drug discovery. Microbial Biotechnology, 2019, 12, 55-57.	2.0	112
70	The Genomic Enzymology of Antibiotic Resistance. Annual Review of Genetics, 2010, 44, 25-51.	3.2	109
71	Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Frontiers in Bioscience - Landmark, 1999, 4, d9.	3.0	108
72	Coronavirus Disease 2019 and Antimicrobial Resistance: Parallel and Interacting Health Emergencies. Clinical Infectious Diseases, 2021, 72, 1657-1659.	2.9	104

#	Article	IF	Citations
73	Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Current Opinion in Microbiology, 2015, 27, 45-50.	2.3	103
74	D-Alanyl-D-alanine ligases and the molecular mechanism of vancomycin resistance. Accounts of Chemical Research, 1992, 25, 468-473.	7.6	102
75	A Common Platform for Antibiotic Dereplication and Adjuvant Discovery. Cell Chemical Biology, 2017, 24, 98-109.	2.5	95
76	Inhibition of Aminoglycoside Antibiotic Resistance Enzymes by Protein Kinase Inhibitors. Journal of Biological Chemistry, 1997, 272, 24755-24758.	1.6	93
77	Prodigious substrate specificity of AAC($6\hat{a}\in^2$)-APH($2\hat{a}\in^2$ '), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. Chemistry and Biology, 1999, 6, 99-110.	6.2	93
78	Chemical biology of tetracycline antibioticsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2008, 86, 124-136.	0.9	93
79	Plazomicin Retains Antibiotic Activity against Most Aminoglycoside Modifying Enzymes. ACS Infectious Diseases, 2018, 4, 980-987.	1.8	91
80	Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning. Cell Systems, 2015, 1, 383-395.	2.9	89
81	Inhibitors of metallo-β-lactamases. Current Opinion in Microbiology, 2017, 39, 96-105.	2.3	89
82	Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in <i>Salmonella</i> Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12054-12059.	3.3	88
83	Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Letters, 2011, 585, 1061-1066.	1.3	87
84	Analysis of the π-π Stacking Interactions between the Aminoglycoside Antibiotic Kinase APH(3′)-Illa and Its Nucleotide Ligands. Chemistry and Biology, 2002, 9, 1209-1217.	6.2	84
85	Multicopy Suppressors for Novel Antibacterial Compounds Reveal Targets and Drug Efflux Susceptibility. Chemistry and Biology, 2004, 11, 1423-1430.	6.2	83
86	The antibiotic resistome. Expert Opinion on Drug Discovery, 2010, 5, 779-788.	2.5	83
87	Mechanism and Diversity of the Erythromycin Esterase Family of Enzymes. Biochemistry, 2012, 51, 1740-1751.	1.2	83
88	Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. Chemistry and Biology, 1999, 6, 11-18.	6.2	80
89	Streptogramin Antibiotics: Mode of Action and Resistance. Current Drug Targets, 2002, 3, 335-344.	1.0	80
90	Molecular Mechanism of Avibactam-Mediated \hat{l}^2 -Lactamase Inhibition. ACS Infectious Diseases, 2015, 1, 175-184.	1.8	80

#	Article	IF	Citations
91	Broad-Spectrum Peptide Inhibitors of Aminoglycoside Antibiotic Resistance Enzymes. Chemistry and Biology, 2003, 10, 189-196.	6.2	79
92	Kinetic Mechanism of the GCN5-Related Chromosomal Aminoglycoside Acetyltransferase AAC(6â€^)-li fromEnterococcus faecium: Evidence of Dimer Subunit Cooperativityâ€. Biochemistry, 2003, 42, 6565-6574.	1.2	74
93	Synthesis and Structureâ^'Activity Relationships of Truncated Bisubstrate Inhibitors of Aminoglycoside 6â€~N-Acetyltransferases. Journal of Medicinal Chemistry, 2006, 49, 5273-5281.	2.9	74
94	Bacterial Inactivation of the Anticancer Drug Doxorubicin. Chemistry and Biology, 2012, 19, 1255-1264.	6.2	73
95	Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets. Trends in Molecular Medicine, 2020, 26, 768-782.	3.5	73
96	A Small Molecule Discrimination Map of the Antibiotic Resistance Kinome. Chemistry and Biology, 2011, 18, 1591-1601.	6.2	72
97	Structure and Mechanism of the Lincosamide Antibiotic Adenylyltransferase LinB. Structure, 2009, 17, 1649-1659.	1.6	70
98	A Forward Chemical Screen Identifies Antibiotic Adjuvants in <i>Escherichia coli</i> ACS Chemical Biology, 2012, 7, 1547-1555.	1.6	69
99	An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens. Cell Reports, 2015, 13, 1481-1492.	2.9	68
100	Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics. Nature Biotechnology, 2019, 37, 1149-1154.	9.4	68
101	Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. Nature Microbiology, 2019, 4, 1862-1871.	5.9	67
102	Kinetic Mechanism of Aminoglycoside Phosphotransferase Type Illa. Journal of Biological Chemistry, 1995, 270, 24686-24692.	1.6	65
103	Antibiotic Resistance by Enzyme Inactivation: From Mechanisms to Solutions. ChemBioChem, 2010, 11, 1325-1334.	1.3	65
104	Structure and Function of Sedoheptulose-7-phosphate Isomerase, a Critical Enzyme for Lipopolysaccharide Biosynthesis and a Target for Antibiotic Adjuvants. Journal of Biological Chemistry, 2008, 283, 2835-2845.	1.6	63
105	Capturing the Resistome: a Targeted Capture Method To Reveal Antibiotic Resistance Determinants in Metagenomes. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	63
106	Molecular Mechanism of Aminoglycoside Antibiotic Kinase APH(3′)-Illa. Journal of Biological Chemistry, 2001, 276, 23929-23936.	1.6	61
107	Transformation of the Anticancer Drug Doxorubicin in the Human Gut Microbiome. ACS Infectious Diseases, 2018, 4, 68-76.	1.8	61
108	Antibiotic resistance: it's bad, but why isn't it worse?. BMC Biology, 2017, 15, 84.	1.7	60

#	Article	IF	CITATIONS
109	Cystathionine \hat{l}^2 -Lyase Is Important for Virulence of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2004, 72, 3310-3314.	1.0	59
110	A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7102-7107.	3.3	59
111	Vgb from Staphylococcus aureus Inactivates Streptogramin B Antibiotics by an Elimination Mechanism Not Hydrolysis. Biochemistry, 2001, 40, 8877-8886.	1.2	57
112	Forces shaping the antibiotic resistome. BioEssays, 2014, 36, 1179-1184.	1.2	56
113	Antimicrobial Resistance and Respiratory Infections. Chest, 2018, 154, 1202-1212.	0.4	56
114	Role of Homoserine Transacetylase as a New Target for Antifungal Agents. Antimicrobial Agents and Chemotherapy, 2007, 51, 1731-1736.	1.4	55
115	Diversity-Oriented Synthesis and Preliminary Biological Screening of Highly Substituted Five-Membered Lactones and Lactams Originating From an Allyboration of Aldehydes and Imines. ACS Combinatorial Science, 2009, 11, 155-168.	3.3	54
116	One-pot chemoenzymatic preparation of coenzyme A analogues. Analytical Biochemistry, 2004, 324, 100-105.	1.1	53
117	Domainâ^'Domain Interactions in the Aminoglycoside Antibiotic Resistance Enzyme AAC(6 )-APH(2 Â )â€. Biochemistry, 2004, 43, 9846-9855.	1.2	53
118	Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. Journal of Antibiotics, 2010, 63, 177-182.	1.0	53
119	A Cryptic Polyene Biosynthetic Gene Cluster in Streptomyces calvus Is Expressed upon Complementation with a Functional bldA Gene. Chemistry and Biology, 2013, 20, 1214-1224.	6.2	53
120	An In Vitro Screen of Bacterial Lipopolysaccharide Biosynthetic Enzymes Identifies an Inhibitor of ADP-Heptose Biosynthesis. Chemistry and Biology, 2006, 13, 437-441.	6.2	52
121	Inactivation of the Lipopeptide Antibiotic Daptomycin by Hydrolytic Mechanisms. Antimicrobial Agents and Chemotherapy, 2012, 56, 757-764.	1.4	52
122	Structural and Kinetic Characterization of Diazabicyclooctanes as Dual Inhibitors of Both Serine-β-Lactamases and Penicillin-Binding Proteins. ACS Chemical Biology, 2016, 11, 864-868.	1.6	52
123	Prospects for Antibacterial Discovery and Development. Journal of the American Chemical Society, 2021, 143, 21127-21142.	6.6	51
124	Catalytic Mechanism of Enterococcal Kanamycin Kinase (APH(3â€~)-Illa):  Viscosity, Thio, and Solvent Isotope Effects Support a Theorellâ^¹Chance Mechanism. Biochemistry, 1996, 35, 8680-8685.	1.2	50
125	Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem Activity in Vivo against NDM-1-Producing <i>Klebsiella pneumoniae ACS Infectious Diseases 2015 1 , 533-543</i>	1.8	50
126	An irresistible newcomer. Nature, 2015, 517, 442-444.	13.7	50

#	Article	IF	CITATIONS
127	Total Synthesis and Activity of the Metalloâ€Î²â€lactamase Inhibitor Aspergillomarasmineâ€A. Angewandte Chemie - International Edition, 2016, 55, 2210-2212.	7.2	50
128	The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Nature Communications, 2018, 9, 112.	5.8	50
129	Structural and Molecular Basis for Resistance to Aminoglycoside Antibiotics by the Adenylyltransferase ANT($2\hat{a}\in ^3$)-la. MBio, 2015, 6, .	1.8	49
130	Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases. Nature Structural Biology, 2000, 7, 238-244.	9.7	48
131	Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action. Cell Chemical Biology, 2018, 25, 403-412.e5.	2.5	48
132	Probing the Interaction of Aspergillomarasmine A with Metallo- \hat{l}^2 -lactamases NDM-1, VIM-2, and IMP-7. ACS Infectious Diseases, 2018, 4, 135-145.	1.8	48
133	Regiospecificity of Aminoglycoside Phosphotransferase from Enterococci and Staphylococci (APH(3â€^)-Illa). Biochemistry, 1996, 35, 8686-8695.	1.2	46
134	Characterization of a Rifampin-Inactivating Glycosyltransferase from a Screen of Environmental Actinomycetes. Antimicrobial Agents and Chemotherapy, 2012, 56, 5061-5069.	1.4	46
135	A molecular portrait of maternal sepsis from Byzantine Troy. ELife, 2017, 6, .	2.8	46
136	Palmitoylâ€ <scp>dl</scp> â€Carnitine is a Multitarget Inhibitor of <i>Pseudomonas aeruginosa</i> Biofilm Development. ChemBioChem, 2011, 12, 2759-2766.	1.3	45
137	Vancomycin-Variable Enterococci Can Give Rise to Constitutive Resistance during Antibiotic Therapy. Antimicrobial Agents and Chemotherapy, 2015, 59, 1405-1410.	1.4	45
138	Opportunities for Synthetic Biology in Antibiotics: Expanding Glycopeptide Chemical Diversity. ACS Synthetic Biology, 2015, 4, 195-206.	1.9	45
139	Crystal Structure of Homoserine Transacetylase fromHaemophilus influenzaeReveals a New Family of α/β-Hydrolasesâ€,‡. Biochemistry, 2005, 44, 15768-15773.	1.2	44
140	Isolation of flavonoids from the heartwood and resin of Prunus avium and some preliminary biological investigations. Phytochemistry, 2009, 70, 2040-2046.	1.4	44
141	Inhibition of the ANT(2″)-la resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic α-hydroxytropolones. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4943-4947.	1.0	44
142	Molecular Mechanism of the Enterococcal Aminoglycoside 6â€~-N-Acetyltransferaseâ€~:  Role of GNAT-Conserved Residues in the Chemistry of Antibiotic Inactivation. Biochemistry, 2004, 43, 446-454.	1.2	43
143	Small-Molecule Modulators of Listeria monocytogenes Biofilm Development. Applied and Environmental Microbiology, 2012, 78, 1454-1465.	1.4	43
144	Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Biochemical Journal, 2013, 454, 191-200.	1.7	43

#	Article	IF	CITATIONS
145	Mechanism of Aminoglycoside Antibiotic Kinase APH(3â€~)-Illa: Role of the Nucleotide Positioning Loopâ€. Biochemistry, 2002, 41, 7001-7007.	1.2	42
146	Structural basis for streptogramin B resistance in Staphylococcus aureus by virginiamycin B lyase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10388-10393.	3.3	42
147	Biosynthesis of the Fluorinated Natural Product Nucleocidin in <i>Streptomyces calvus</i> ls Dependent on the <i>bldA</i> pecified Leuâ€ŧRNA ^{UUA} Molecule. ChemBioChem, 2015, 16, 2498-2506.	1.3	41
148	Synthesis and inhibitory action on HMG-CoA synthase of racemic and optically active oxetan-2-ones (β-Lactones). Bioorganic and Medicinal Chemistry, 1998, 6, 1255-1272.	1.4	40
149	An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2014, 69, 1844-1855.	1.3	40
150	Evolving medicinal chemistry strategies in antibiotic discovery. Current Opinion in Biotechnology, 2016, 42, 108-117.	3.3	39
151	Environmental and clinical antibiotic resistomes, same only different. Current Opinion in Microbiology, 2019, 51, 57-63.	2.3	39
152	Inhibitors of Bacterial Cystathionine \hat{l}^2 -Lyase: \hat{A} Leads for New Antimicrobial Agents and Probes of Enzyme Structure and Function. Journal of Medicinal Chemistry, 2007, 50, 755-764.	2.9	38
153	Total Synthesis of Aspergillomarasmineâ€A and Related Compounds: A Sulfamidate Approach Enables Exploration of Structure–Activity Relationships. Angewandte Chemie - International Edition, 2016, 55, 13259-13262.	7.2	38
154	The COOH Terminus of Aminoglycoside Phosphotransferase (3′)-Illa Is Critical for Antibiotic Recognition and Resistance. Journal of Biological Chemistry, 1999, 274, 30697-30706.	1.6	37
155	Structure and Function of the Glycopeptide N-methyltransferase MtfA, a Tool for the Biosynthesis of Modified Glycopeptide Antibiotics. Chemistry and Biology, 2009, 16, 401-410.	6.2	37
156	Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nature Communications, 2016, $7,11343$.	5.8	36
157	Heterologous expression-facilitated natural products' discovery in actinomycetes. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 415-431.	1.4	36
158	Imipridone Anticancer Compounds Ectopically Activate the ClpP Protease and Represent a New Scaffold for Antibiotic Development. Genetics, 2020, 214, 1103-1120.	1.2	36
159	On the Road to Bacterial Cell Death. Cell, 2007, 130, 781-783.	13.5	35
160	Venturicidin A, A Membrane-active Natural Product Inhibitor of ATP synthase Potentiates Aminoglycoside Antibiotics. Scientific Reports, 2020, 10, 8134.	1.6	35
161	Arrangement of Substrates at the Active Site of an Aminoglycoside Antibiotic 3â€~-Phosphotransferase As Determined by NMR. Journal of the American Chemical Society, 1996, 118, 1295-1301.	6.6	34
162	Biosynthesis of Sulfated Glycopeptide Antibiotics by Using the Sulfotransferase StaL. Chemistry and Biology, 2006, 13, 171-181.	6.2	33

#	Article	IF	CITATIONS
163	Active site labeling of the gentamicin resistance enzyme AAC($6\hat{a}\in^2$)-APH($2\hat{a}\in^3$) by the lipid kinase inhibitor wortmannin. Chemistry and Biology, 2001, 8, 791-800.	6.2	32
164	Diversity of Integron- and Culture-Associated Antibiotic Resistance Genes in Freshwater Floc. Applied and Environmental Microbiology, 2012, 78, 4367-4372.	1.4	32
165	The Origins of Antibiotic Resistance. Handbook of Experimental Pharmacology, 2012, , 13-30.	0.9	32
166	StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response. Molecular Microbiology, 2002, 44, 417-430.	1.2	31
167	Solution Studies of Isepamicin and Conformational Comparisons between Isepamicin and Butirosin A When Bound to an Aminoglycoside $6 \hat{a} \in \mathbb{C}^-$ N-Acetyltransferase Determined by NMR Spectroscopy. Biochemistry, 1998, 37, 3638-3644.	1.2	30
168	The Wall Teichoic Acid Polymerase TagF Efficiently Synthesizes Poly(glycerol phosphate) on the TagB Product Lipid III. ChemBioChem, 2008, 9, 1385-1390.	1.3	30
169	Nucleotide Selectivity of Antibiotic Kinases. Antimicrobial Agents and Chemotherapy, 2010, 54, 1909-1913.	1.4	30
170	Structure and Function of APH(4)-la, a Hygromycin B Resistance Enzyme. Journal of Biological Chemistry, 2011, 286, 1966-1975.	1.6	30
171	Self Resistance to the Atypical Cationic Antimicrobial Peptide Edeine of Brevibacillus brevis Vm4 by the N-Acetyltransferase EdeQ. Chemistry and Biology, 2013, 20, 983-990.	6.2	30
172	Harnessing the Synthetic Capabilities of Glycopeptide Antibiotic Tailoring Enzymes: Characterization of the UKâ€68,597 Biosynthetic Cluster. ChemBioChem, 2014, 15, 2613-2623.	1.3	30
173	Demonstration of the role of cell wall homeostasis in $\langle i \rangle$ Staphylococcus aureus $\langle i \rangle$ growth and the action of bactericidal antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
174	Active-Site Labeling of an Aminoglycoside Antibiotic Phosphotransferase (APH(3')-IIIa). Biochemistry, 1994, 33, 14115-14120.	1.2	29
175	Microwave-assisted synthesis of N1- and C3-substituted pyrazolo[3,4-d]pyrimidine libraries. Tetrahedron Letters, 2011, 52, 5761-5763.	0.7	29
176	Enzyme-Assisted Suicide. Chemistry and Biology, 2003, 10, 989-995.	6.2	28
177	Chimeric Streptogramin-Tyrocidine Antibiotics that Overcome Streptogramin Resistance. Chemistry and Biology, 2005, 12, 229-235.	6.2	28
178	Accessorizing natural products: Adding to nature's toolbox. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 519-520.	3.3	28
179	Catalytic Mechanism of Fungal Homoserine Transacetylase. Biochemistry, 2005, 44, 13560-13566.	1.2	28
180	\hat{l}^2 -Lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents. Journal of Antibiotics, 2011, 64, 483-487.	1.0	28

#	Article	IF	Citations
181	Receptor domains of two-component signal transduction systems. Molecular BioSystems, 2011, 7, 1388.	2.9	28
182	Mechanism of aminoglycoside 3'-phosphotransferase type IIIa: His188 is not a phosphate-accepting residue. Chemistry and Biology, 1996, 3, 747-755.	6.2	27
183	How To Make a Glycopeptide: A Synthetic Biology Approach To Expand Antibiotic Chemical Diversity. ACS Infectious Diseases, 2016, 2, 642-650.	1.8	27
184	Discovery of Ibomycin, a Complex Macrolactone that Exerts Antifungal Activity by Impeding Endocytic Trafficking and Membrane Function. Cell Chemical Biology, 2016, 23, 1383-1394.	2.5	27
185	Structural and Kinetic Characterization of the LPS Biosynthetic Enzyme $d-l\pm,l^2-d-Heptose-1,7-bisphosphate Phosphatase (GmhB) from Escherichia coli,. Biochemistry, 2010, 49, 1033-1041.$	1.2	26
186	Novel approaches to discovery of antibacterial agents. Animal Health Research Reviews, 2008, 9, 237-246.	1.4	25
187	The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory <i>clpP</i> Gene as a Novel Antibiotic Resistance Factor. Applied and Environmental Microbiology, 2019, 85, .	1.4	25
188	New phenolic inhibitors of yeast homoserine dehydrogenase. Bioorganic and Medicinal Chemistry, 2004, 12, 3825-3830.	1.4	24
189	The Molecular Basis of the Expansive Substrate Specificity of the Antibiotic Resistance Enzyme Aminoglycoside Acetyltransferase-6′-Aminoglycoside Phosphotransferase-2". Journal of Biological Chemistry, 2003, 278, 12873-12880.	1.6	23
190	Designing analogs of ticlopidine, a wall teichoic acid inhibitor, to avoid formation of its oxidative metabolites. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 905-910.	1.0	23
191	Aspergillomarasmine A inhibits metallo- \hat{l}^2 -lactamases by selectively sequestering Zn2+. Journal of Biological Chemistry, 2021, 297, 100918.	1.6	23
192	DdlN from Vancomycin-Producing <i>Amycolatopsis orientalis</i> C329.2 Is a VanA Homologue with <scp>d</scp> -Alanyl- <scp>d</scp> -Lactate Ligase Activity. Journal of Bacteriology, 1998, 180, 5792-5795.	1.0	23
193	Purification and Characterization of Two Haloperoxidases from the Glycopeptide Antibiotic ProducerStreptomyces toyocaensisNRRL 15009. Biochemical and Biophysical Research Communications, 1996, 219, 580-583.	1.0	22
194	Crystal Structure of StaL, a Glycopeptide Antibiotic Sulfotransferase from Streptomyces toyocaensis. Journal of Biological Chemistry, 2007, 282, 13073-13086.	1.6	22
195	Perspective: Synthetic biology revives antibiotics. Nature, 2014, 509, S13-S13.	13.7	22
196	Characterization of yeast homoserine dehydrogenase, an antifungal target: the invariant histidine 309 is important for enzyme integrity. BBA - Proteins and Proteomics, 2001, 1544, 28-41.	2.1	21
197	Simultaneous In Vitro Assay of the First Four Enzymes in the Fungal Aspartate Pathway Identifies a New Class of Aspartate Kinase Inhibitor. Chemistry and Biology, 2003, 10, 967-973.	6.2	21
198	GPAHex-A synthetic biology platform for Type IV–V glycopeptide antibiotic production and discovery. Nature Communications, 2020, 11, 5232.	5.8	21

#	Article	IF	Citations
199	Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nature Communications, 2022, 13, .	5.8	21
200	Spectinomycin Kinase from Legionella pneumophila. Journal of Biological Chemistry, 1998, 273, 14788-14795.	1.6	20
201	Homoserine dehydrogenase from Saccharomyces cerevisiae: kinetic mechanism and stereochemistry of hydride transfer. BBA - Proteins and Proteomics, 2001, 1544, 42-54.	2.1	20
202	Functional Annotation of Putative Aminoglycoside Antibiotic Modifying Proteins in Mycobacterium tuberculosis H37Rv Journal of Antibiotics, 2003, 56, 135-142.	1.0	20
203	BIOCHEMISTRY: A New Target for Antibiotic Development. Science, 2007, 315, 1373-1374.	6.0	20
204	Glycopeptide Sulfation Evades Resistance. Journal of Bacteriology, 2013, 195, 167-171.	1.0	20
205	Determining the mode of action of bioactive compounds. Bioorganic and Medicinal Chemistry, 2012, 20, 1929-1939.	1.4	19
206	ClpP inhibitors are produced by a widespread family of bacterial gene clusters. Nature Microbiology, 2022, 7, 451-462.	5.9	19
207	Making Sense of Antisense in Antibiotic Drug Discovery. Cell Host and Microbe, 2009, 6, 197-198.	5.1	18
208	Role of PBPD1 in Stimulation of Listeria monocytogenes Biofilm Formation by Subminimal Inhibitory β-Lactam Concentrations. Antimicrobial Agents and Chemotherapy, 2014, 58, 6508-6517.	1.4	18
209	Establishing the Principles of Recognition in the Adenine-Binding Region of an Aminoglycoside Antibiotic Kinase [APH(3â€~)-Illa]â€. Biochemistry, 2005, 44, 12445-12453.	1.2	17
210	Membrane interactions of non-membrane targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183448.	1.4	17
211	The Enzymes of the Rifamycin Antibiotic Resistome. Accounts of Chemical Research, 2021, 54, 2065-2075.	7.6	17
212	Metal-Induced Isomerization Yields an Intracellular Chelator that Disrupts Bacterial Iron Homeostasis. Chemistry and Biology, 2014, 21, 136-145.	6.2	16
213	ldentification of a common proteaseâ€sensitive region in <scp>d</scp> â€alanylâ€ <scp>d</scp> â€alanylâ€ <scp>d</scp> â€alanylâ€ <scp>d</scp> â€alanylâ€ <scp>d</scp> â€actate ligases and photoaffinity labeling with 8â€azido ATP. Protein Science, 1993, 2, 1765-1769.	3.1	15
214	Molecular Mechanism of VanHst, an α-Ketoacid Dehydrogenase Required for Glycopeptide Antibiotic Resistance from a Glycopeptide Producing Organismâ€. Biochemistry, 1999, 38, 8485-8491.	1.2	15
215	How antibiotics kill bacteria: new models needed?. Nature Medicine, 2013, 19, 544-545.	15.2	15
216	Substrate Recognition by a Colistin Resistance Enzyme from <i>Moraxella catarrhalis</i> Chemical Biology, 2018, 13, 1322-1332.	1.6	15

#	Article	IF	CITATIONS
217	The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME Journal, 2018, 12, 885-897.	4.4	15
218	Suppression of \hat{I}^2 -Lactam Resistance by Aspergillomarasmine A Is Influenced by both the Metallo- \hat{I}^2 -Lactamase Target and the Antibiotic Partner. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	15
219	Inhibition of sporulation, glycopeptide antibiotic production and resistance in Streptomyces toyocaensis NRRL 15009 by protein kinase inhibitors. FEMS Microbiology Letters, 2001, 199, 15-20.	0.7	14
220	Biosynthetic gene cluster and antimicrobial activity of the elfamycin antibiotic factumycin. MedChemComm, 2012, 3, 1020.	3.5	14
221	Sulfonation of glycopeptide antibiotics by sulfotransferase StaL depends on conformational flexibility of aglycone scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11824-11829.	3.3	14
222	Pharmacodynamics of dose-escalated †front-loading†polymyxin B regimens against polymyxin-resistant mcr-1-harbouring Escherichia coli. Journal of Antimicrobial Chemotherapy, 2017, 72, 2297-2303.	1.3	14
223	The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009 has both d-alanyl-d-alanine and d-alanyl-d-lactate ligases. FEMS Microbiology Letters, 2006, 157, 295-299.	0.7	13
224	Alternative Pathway to a Glycopeptide-Resistant Cell Wall in the Balhimycin ProducerAmycolatopsis balhimycina. ACS Infectious Diseases, 2015, 1, 243-252.	1.8	13
225	Antifungal Drugs: The Current Armamentarium and Development of New Agents., 0,, 903-922.		13
226	Targeting SUMOylation dependency in human cancer stem cells through a unique SAE2 motif revealed by chemical genomics. Cell Chemical Biology, 2021, 28, 1394-1406.e10.	2.5	13
227	Systematic chemical-genetic and chemical-chemical interaction datasets for prediction of compound synergism. Scientific Data, 2016, 3, 160095.	2.4	12
228	Exploiting the Sensitivity of Nutrient Transporter Deletion Strains in Discovery of Natural Product Antimetabolites. ACS Infectious Diseases, 2017, 3, 955-965.	1.8	12
229	ApmA Is a Unique Aminoglycoside Antibiotic Acetyltransferase That Inactivates Apramycin. MBio, 2021, 12, .	1.8	12
230	Superbugs: How they evolve and minimize the cost of resistance. Current Infectious Disease Reports, 1999, 1, 464-469.	1.3	11
231	Functionally important amino acids in Saccharomyces cerevisiae aspartate kinase. Biochemical and Biophysical Research Communications, 2003, 311, 597-603.	1.0	11
232	Total Synthesis and Activity of the Metalloâ€Î²â€lactamase Inhibitor Aspergillomarasmineâ€A. Angewandte Chemie, 2016, 128, 2250-2252.	1.6	11
233	Non-sterol structural probes of the lanosterol $14\hat{l}\pm$ -demethylase from Saccharomyces cerevisiae. BBA - Proteins and Proteomics, 1990, 1040, 95-101.	2.1	10
234	Catalytic promiscuity of glycopeptide N-methyltransferases enables bio-orthogonal labelling of biosynthetic intermediates. Chemical Communications, 2016, 52, 13679-13682.	2.2	10

#	Article	IF	CITATIONS
235	Resistance-Guided Discovery of Elfamycin Antibiotic Producers with Antigonococcal Activity. ACS Infectious Diseases, 2020, 6, 3163-3173.	1.8	10
236	Ancient Antibiotics, Ancient Resistance. EcoSal Plus, 2021, 9, .	2.1	10
237	Phylogeny-Informed Synthetic Biology Reveals Unprecedented Structural Novelty in Type V Glycopeptide Antibiotics. ACS Central Science, 2022, 8, 615-626.	5.3	10
238	Biochemical Logic of Antibiotic Inactivation and Modification. , 2009, , 81-95.		9
239	Back to the future: a new †old†lead for tuberculosis. EMBO Molecular Medicine, 2012, 4, 1029-1031.	3.3	9
240	Noncanonical Vancomycin Resistance Cluster from <i>Desulfitobacterium hafniense</i> Y51. Antimicrobial Agents and Chemotherapy, 2009, 53, 2841-2845.	1.4	8
241	Identifying novel \hat{l}^2 -lactamase substrate activity through in silico prediction of antimicrobial resistance. Microbial Genomics, 2021, 7, .	1.0	8
242	Identification and Characterization of New Inhibitors of Fungal Homoserine Kinase. ChemBioChem, 2011, 12, 1179-1182.	1.3	7
243	Winners of the 2014 JA Medals for excellence. Journal of Antibiotics, 2015, 68, 1-2.	1.0	7
244	Structural and Functional Plasticity of Antibiotic Resistance Nucleotidylyltransferases Revealed by Molecular Characterization of Lincosamide Nucleotidylyltransferases Lnu(A) and Lnu(D). Journal of Molecular Biology, 2015, 427, 2229-2243.	2.0	7
245	Membrane-Active Rhamnolipids Overcome Aminoglycoside Resistance. Cell Chemical Biology, 2019, 26, 1333-1334.	2.5	7
246	A Screen of Natural Product Extracts Identifies Moenomycin as a Potent Antigonococcal Agent. ACS Infectious Diseases, 2021, 7, 1569-1577.	1.8	7
247	CrpP Is Not a Fluoroquinolone-Inactivating Enzyme. Antimicrobial Agents and Chemotherapy, 2021, 65, e0077321.	1.4	7
248	Problems with Co-Funding in Canada. Science, 2005, 308, 1867b-1867b.	6.0	6
249	Antimicrobials. Current Opinion in Microbiology, 2009, 12, 473-475.	2.3	6
250	Antibiotic Resistance themed issue. MedChemComm, 2016, 7, 10-10.	3.5	6
251	Natural Products in Antibiotic Discovery. , 2018, , 533-562.		6
252	Crystallization and preliminary X-ray crystallographic analysis of the tetracycline-degrading monooxygenase TetX2 from <i>Bacteroides thetaiotaomicron </i> Structural Biology Communications, 2010, 66, 611-614.	0.7	5

#	Article	IF	CITATIONS
253	Inactive but not inert. Nature Chemical Biology, 2010, 6, 85-86.	3.9	5
254	Total Synthesis of Aspergillomarasmineâ€A and Related Compounds: A Sulfamidate Approach Enables Exploration of Structure–Activity Relationships. Angewandte Chemie, 2016, 128, 13453-13456.	1.6	5
255	Empowering Older Antibiotics. Cell, 2016, 167, 301.	13.5	5
256	Structural Aspects of Aminoglycoside-Modifying Enzymes. , 0, , 21-33.		5
257	Effects of iron binding agents on <i>Saccharomyces cerevisiae</i> growth and cytochrome P450 content. Canadian Journal of Microbiology, 1989, 35, 945-950.	0.8	4
258	Aminoglycoside Resistance Mechanisms. , 2014, , 85-100.		4
259	Three-Dimensional Structure and Optimization of the Metallo-β-Lactamase Inhibitor Aspergillomarasmine A. ACS Omega, 2022, 7, 4170-4184.	1.6	4
260	Investigation of lysine: N-hydroxylation in the biosynthesis of the siderophore aerobactin. Bioorganic Chemistry, 1989, 17, 13-27.	2.0	3
261	Crystallization and preliminary X-ray diffraction studies of homoserine dehydrogenase from Saccharomyces cerevisiae. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 413-415.	2.5	3
262	Trichlorination of a Teicoplanin-Type Glycopeptide Antibiotic by the Halogenase Stal Evades Resistance. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	3
263	Structural and molecular rationale for the diversification of resistance mediated by the Antibiotic_NAT family. Communications Biology, 2022, 5, 263.	2.0	3
264	Small molecule functional discrimination of the kinases required for the microbial synthesis of threonine and isoleucine. Bioorganic and Medicinal Chemistry, 2004, 12, 807-815.	1.4	2
265	Allostery Trumps Antibiotic Resistance. Structure, 2005, 13, 1089-1090.	1.6	2
266	Dedication: Heinz Floss and Christopher Walshâ€"pioneers in natural product chemical biology. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 251-255.	1.4	2
267	Mechanisms of Aminoglycoside Antibiotic Resistance. , 2007, , 71-101.		2
268	Biochemical Logic of Antibiotic Inactivation and Modification., 2017,, 97-113.		2
269	A non-reactive natural product precursor of the duocarmycin family has potent and selective antimalarial activity. Cell Chemical Biology, 2022, 29, 840-853.e6.	2.5	2
270	Synthesis and evaluation of photoaffinity probes directed at lanosterol 14α-demethylase (P-45014DM). Bioorganic and Medicinal Chemistry Letters, 1992, 2, 383-386.	1.0	1

#	Article	IF	Citations
271	The "Molecular Logic―Underlying Antibiotic Activity and Structure. Chemistry and Biology, 2003, 10, 381-382.	6.2	1
272	Structure and function of APH(4)-la, a hygromycin B resistance enzyme Journal of Biological Chemistry, 2011, 286, 42786.	1.6	1
273	Antibiotic Dereplication Using the Antibiotic Resistance Platform. Journal of Visualized Experiments, 2019, , .	0.2	1
274	Redox Mechanisms and Reactive Oxygen Species in Antibiotic Action and Resistance., 0,, 459-471.		1
275	Glycopeptide antibiotic discovery in the genomic era. Methods in Enzymology, 2022, 665, 325-346.	0.4	1
276	Inhibiting C-4 Methyl Sterol Oxidase with Novel Diazaborines to Target Fungal Plant Pathogens. ACS Chemical Biology, 2022, 17, 1343-1350.	1.6	1
277	Streptogramins, Oxazolidinones, and Other Inhibitors of Bacterial Protein Synthesis. ChemInform, 2005, 36, no.	0.1	O
278	New Targets and Screening Approaches in Antimicrobial Drug Discovery. ChemInform, 2005, 36, no.	0.1	0
279	First JA Medal goes to a paper on decalpenic acid. Journal of Antibiotics, 2012, 65, 591-592.	1.0	O
280	Christopher Walsh: Pioneer and innovator in antibiotic and natural product chemical biology. Journal of Antibiotics, 2014, 67, 5-6.	1.0	0
281	Winners of the 2013 JA Medals for excellence. Journal of Antibiotics, 2014, 67, 351-352.	1.0	O
282	Resistance to aminoglycoside Antibiotics: Function meets structure. Focus on Biotechnology, 2001, , 85-98.	0.4	0
283	d-Ala-d-Ala carboxypeptidase VanY. , 2004, , 859-860.		0
284	d-Ala-d-Ala Carboxypeptidase VanY., 2013,, 1393-1395.		0